Skip to main content
Log in

Condensation in the Zero Range Process: Stationary and Dynamical Properties

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The zero range process is of particular importance as a generic model for domain wall dynamics of one-dimensional systems far from equilibrium. We study this process in one dimension with rates which induce an effective attraction between particles. We rigorously prove that for the stationary probability measure there is a background phase at some critical density and for large system size essentially all excess particles accumulate at a single, randomly located site. Using random walk arguments supported by Monte Carlo simulations, we also study the dynamics of the clustering process with particular attention to the difference between symmetric and asymmetric jump rates. For the late stage of the clustering we derive an effective master equation, governing the occupation number at clustering sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. Y. Kafri, E. Levine, D. Mukamel, G. M. Schütz, and J. Török, Criterion for phase separation in one-dimensional driven systems, Phys. Rev. Lett. 89:035702(2002).

    Google Scholar 

  2. F. Spitzer, Interaction of markov processes, Adv. Math. 5:246–290 (1970).

    Google Scholar 

  3. E. D. Andjel, Invariant measures for the zero range process, Ann. Probab. 10:525–547 (1982).

    Google Scholar 

  4. C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Vol. 320 of Grundlehren der mathematischen Wissenschaften (Springer-Verlag, 1999).

  5. T. M. Liggett and F. Spitzer, Ergodic theorems for coupled random walks and other systems with locally interacting components, Z. Wahrscheinlichkeitstheorie verw. Gebiete 56:443–468 (1981).

    Google Scholar 

  6. P. Bialas, Z. Burda, and D. Johnston, Condensation in the backgammon model, Nuclear Phys. B 493:505–516 (1997).

    Google Scholar 

  7. M. R. Evans, Phase transitions in one-dimensional nonequilibrium systems, Braz. J. Phys. 30:42–57 (2000).

    Google Scholar 

  8. V. Vinogradov, Refined Large Deviation Limit Theorems, Vol. 315 of Pitman Research Notes in Mathematics Series (Longman, Harlow, England, 1994).

    Google Scholar 

  9. A. Baltrunas and C. Klüppelberg, Subexponential distributions-large deviations with applications to insurance and queueing models, Aust. N. Z. J. Stat. (to appear March 2004).

  10. C. Godrèche, Dynamics of condensation in zero-range processes, J. Phys. A: Math. Gen. 36:6313–6328 (2003).

    Google Scholar 

  11. G. M. Schütz, Exactly solvable models for many-body systems far from equilibrium, in Phase Transitions and Critical Phenomena, C. Domb and J. Lebowitz, eds., Vol. 19 (Academic Press, London, 2000), pp. 1–251.

    Google Scholar 

  12. D. Mukamel, Phase transitions in nonequilibrium systems, in Soft and Fragile Matter: Nonequilibrium Dynamics, Metastability and Flow, M. E. Cates and M. R. Evans, eds. (Institute of Physics Publishing, Bristol, 2000).

    Google Scholar 

  13. Y. Kafri, E. Levine, D. Mukamel, G. M. Schütz, and R. D. Willmann, Novel phase-separation transition in one-dimensional driven models, cond-mat/0211269 (2002).

  14. M. R. Evans, Y. Kafri, H. M. Koduvely, and D. Mukamel, Phase separation in one-dimensional driven diffusive systems, Phys. Rev. Lett. 80:425–429 (1998).

    Google Scholar 

  15. P. F. Arndt, T. Heinzel, and V. Rittenberg, Spontaneous breaking of translational invariance in one-dimensional stationary states on a ring, J. Phys. A 31:L45(1998).

    Google Scholar 

  16. B. Tóth and B. Valkó, Onsager relations and eulerian hydrodynamic limit for systems with several conservation laws, J. Stat. Phys. 112:497–521 (2003).

    Google Scholar 

  17. V. Popkov and G. M. Schütz, Shocks and excitation dynamics in a driven diffusive two-channel system, J. Stat. Phys. 112:523–540 (2003).

    Google Scholar 

  18. J. Krug, Boundary induced phase transitions in driven diffusive systems, Phys. Rev. Lett. 67:1882–1885 (1991).

    Google Scholar 

  19. A. B. Kolomeisky, G. M. Schütz, E. B. Kolomeisky, and J. P. Straley, Phase diagram of one-dimensional driven lattice gases with open boundaries, J. Phys. A: Math. Gen. 31:6911–6919 (1998).

    Google Scholar 

  20. V. Popkov and G. M. Schütz, Steady-state selection in driven diffusive systems with open boundaries, Europhys. Lett. 48:257–264 (1999).

    Google Scholar 

  21. M. R. Evans, D. P. Foster, C. Godrèche, and D. Mukamel, Spontaneous symmetry-breaking in a one-dimensional driven diffusive system, Phys. Rev. Lett. 74:208(1995).

    Google Scholar 

  22. A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50:221–260 (1978).

    Google Scholar 

  23. B. W. Gnedenko and A. N. Kolmogorov, Limit-Distributions for Sums of Independent Random Variables, Addison-Wesley Mathematics Series (Addison-Wesley, London, 1954).

    Google Scholar 

  24. C. M. Goldie and C. Klüppelberg, Subexponential distributions, in A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy Tailed Distributions, R. Adler, R. Feldman, and M. S. Taqqu, eds. (Birkhäuser, Boston, 1998), pp. 435–459.

    Google Scholar 

  25. M. Abramowitz, Handbook of Mathematical Functions (Dover, New York, 1972).

    Google Scholar 

  26. F. Bardou, J. P. Bouchaud, A. Aspect, and C. Cohen-Tannoudi, Lévy Statistics and Laser Cooling, Chap. 4, (Cambridge University Press, Cambridge, 2002), pp. 42–59.

    Google Scholar 

  27. M. Barma and K. Jain, Locating the minimum: Approach to equilibrium in a disordered, symmetric zero range process, Pramana—J. Phys. 58:409–417 (2002).

    Google Scholar 

  28. K. P. N. Murthy and K. W. Kehr, Mean first-passage time of random walks on a random lattice, Phys. Rev. A 40:2082–2087 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Großkinsky, S., Schütz, G.M. & Spohn, H. Condensation in the Zero Range Process: Stationary and Dynamical Properties. Journal of Statistical Physics 113, 389–410 (2003). https://doi.org/10.1023/A:1026008532442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026008532442

Navigation