Skip to main content
Log in

Multifractal Spectra of Fragmentation Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let (S(t),t≥0) be a homogeneous fragmentation of ]0,1[ with no loss of mass. For x∈]0,1[, we say that the fragmentation speed of x is v if and only if, as time passes, the size of the fragment that contains x decays exponentially with rate v. We show that there is v typ>0 such that almost every point x∈]0,1[ has speed v typ. Nonetheless, for v in a certain range, the random set \(G\) v of points of speed v, is dense in ]0,1[, and we compute explicitly the spectrum v→Dim(\(G\) v ) where Dim is the Hausdorff dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. D. McGrady and R. M. Ziff, The kinetics of cluster fragmentation and depolymerisation, J. Phys. A 18:3027–3037 (1985).

    Google Scholar 

  2. A. M. Basedow, K. H. Ebert, and H. J. Ederer, Kinetic studies on the acidic hydrolysis of Dextran, Macromolecules 11:774–781 (1978).

    Google Scholar 

  3. R. Shinnar, On the behaviour of liquid dispersions in mixing vessels, J. Fluid Mech. 10:259(1961).

    Google Scholar 

  4. J. Gilvarry, Fracture of brittle solids, J. Appl. Phys. 32:391–399 (1961).

    Google Scholar 

  5. X. Campi, Multifragmentation: Nuclei break up like percolation clusters, J. Phys. A 19:L917-L921 (1986).

    Google Scholar 

  6. D. Beysens, X. Campi, and E. Peffekorn (eds.), Proceedings of the Workshop: Fragmentation Phenomena, Les Houches Series (World Scientific, 1995).

  7. D. S. Dean and S. N. Majumdar, Phase transition in a random fragmentation problem with applications to computer science, J. Phys. A 35:L501-L507 (2002).

    Google Scholar 

  8. P. L. Krapivsky and S. N. Majumdar, Extreme value statistics and traveling fronts: An application to computer science, Phys. Rev. E 65:036127(2002).

    Google Scholar 

  9. P. L. Krapivsky and S. N. Majumdar, Traveling waves, front selection, and exact nontrivial exponents in a random fragmentation problem, Phys. Rev. Lett. 85:5492(2000).

    Google Scholar 

  10. A. N. Kolmogoroff, über das logaritmisch normale Verteilungsgesetz de Dimensionen de Teilchen bei Zerstückelung, C. R. (Doklady) Acad. Sci. URSS 31:99–101 (1941).

    Google Scholar 

  11. S. Orey and S. J. Taylor, How often on a Brownian path does the law of iterated logarithm fail? Proc. London Math. Soc. 3:9174–192 (1974).

    Google Scholar 

  12. B. Davis, On Brownian slow points, Z. Wahr. Verw. Gebiete 64:359–367 (1983).

    Google Scholar 

  13. J. P. Kahane, Some Random Series of Function, Vol. 5, 2nd ed. (Cambridge Studies in Advanced Mathematics, 1985).

  14. E. Perkins, On the Hausdorff dimension of the Brownian slow points, Z. Wahr. Verw. Gebiete 64:369–399 (1983).

    Google Scholar 

  15. A. Dembo, Y. Peres, J. Rosen, and O. Zeitouni, Thick points for spatial Brownian motion: Multifractal analysis of occupation measure, Ann. Probab. 28:1–35 (2000).

    Google Scholar 

  16. A. Dembo, Y. Peres, J. Rosen, and O. Zeitouni, Thick points for planar Brownian motion and the Erdös-Taylor conjecture on random walk, Acta Math. 186:239–270 (2001).

    Google Scholar 

  17. A. Dembo, Y. Peres, J. Rosen, and O. Zeitouni, Thin points for Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 36:749–774 (2000).

    Google Scholar 

  18. N. R. Shieh and S. J. Taylor, Multifractal spectra of branching measure on a Galton-Watson tree, J. Appl. Probab. 39:100–111 (2002).

    Google Scholar 

  19. P. Mörters and N. R. Shieh, Thin and thick points for branching measure on a Galton-Watson tree, Statist. Probab. Lett. 58:13–22 (2002).

    Google Scholar 

  20. Q. Liu, Local dimension of the branching measure on a Galton-Watson tree, Ann. Inst. H. Poincaré Probab. Statist. 37:195–222 (2001).

    Google Scholar 

  21. B. M. Hambly and O. D. Jones, Thick an thin points for random recursive fractals, preprint (2002).

  22. R. Lyons, Random walks and percolation on trees, Ann. Probab. 18:931–958 (1990).

    Google Scholar 

  23. Y. Peres, Probability on Trees: An Introductory Climb, Lectures on Probability Theory and Statistics, Vol. 1717 (Springer, 1997), pp. 193–280.

  24. R. Lyons and Y. Peres, Probability on Trees and Networks (Cambridge University Press, 1997), in preparation. Current version available at http://php.indiana.edu/rdlyons/

  25. J. Bertoin, Homogeneous fragmentation processes, Probab. Theory Related Fields 121: 301–318 (2001).

    Google Scholar 

  26. J. Bertoin, The asymptotic behaviour of fragmentation processes, prepublication du Laboratoire de Probabilités et Modèles Aléatoires, Paris 6 et 7 PMA-651 (2001).

  27. K. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, Vol. 85 (Cambridge University Press, 1986).

  28. J. Berestycki, Ranked fragmentation, ESAIM P&S 6:15–176 (2002).

    Google Scholar 

  29. J. Bertoin, Self-similar fragmentations, Ann. Inst. H. Poincaré Probab. Statist. 38:319–340 (2002).

    Google Scholar 

  30. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, third ed., Grundlehren der Mathematischen Wissenschaften, Vol. 293 (Springer-Verlag, Berlin, 1999).

    Google Scholar 

  31. J. D. Biggins and N. H. Bingham, Large deviations in the supercritical branching process, Adv. Appl. Prob. 25:757–772 (1993).

    Google Scholar 

  32. M. D. Brennan and R. Durrett, Splitting intervals II. Limit laws for lengths, Probab. Theory Related Fields 75:109–127 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berestycki, J. Multifractal Spectra of Fragmentation Processes. Journal of Statistical Physics 113, 411–430 (2003). https://doi.org/10.1023/A:1026060516513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026060516513

Navigation