Skip to main content
Log in

Cheeger Type Sobolev Spaces for Metric Space Targets

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper, we consider the natural generalization of Cheeger type Sobolev spaces to maps into a metric space. We solve Dirichlet problem for CAT(0)-space targets, and obtain some results about the relation between Cheeger type Sobolev spaces for maps into a Banach space and those for maps into a subset of that Banach space. We also prove the minimality of upper pointwise Lipschitz constant functions for locally Lipschitz maps into an Alexandrov space of curvature bounded above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A.D., Berestovskii, V.N. and Nikolaev, I.G.: ‘Generalized Riemannian spaces’, Russian Math. Surveys 41 (1986), 1–54.

    Google Scholar 

  2. Ambrosio, L.: ‘Metric space valued functions of bounded variation’, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 439–478.

    Google Scholar 

  3. Biroli, M. and Mosco, U.: ‘Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces’, Atti Accad. Naz. Lincei Cl. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995), 37–44.

    Google Scholar 

  4. Biroli, M. and Mosco, U.: ‘Sobolev inequalities on homogeneous spaces’, Potential Anal. 4 (1995), 311–324.

    Google Scholar 

  5. Bridson, M.R. and Haefliger, A.: Metric Spaces of Non-Positive Curvature, Springer-Verlag, Berlin, 1999.

    Google Scholar 

  6. Burago, D., Burago, Y. and Ivanov, S.: A Course in Metric Geometry, Amer. Math. Soc., Providence, RI, 2001.

    Google Scholar 

  7. Cheeger, J.: ‘Differentiability of Lipschitz functions on metric measure spaces’, Geom. Funct. Anal. 9 (1999), 428–517.

    Google Scholar 

  8. Cheeger, J. and Colding, T. H.: ‘On the structure of spaces with Ricci curvature bounded below. III’. J. Differential Geom. 54 (2000), 37–74.

    Google Scholar 

  9. Evans, L.C. and Gariepy, R.F.: Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.

    Google Scholar 

  10. Federer, H.: Geometric Measure Theory, Springer-Verlag, New York, 1969.

    Google Scholar 

  11. Hajłasz, P.: ‘Sobolev spaces on an arbitrary metric space’, Potential Anal. 5 (1996), 403–415.

    Google Scholar 

  12. Hajłasz, P. and Koskela, P.: ‘Sobolev met Poincaré’, Mem. Amer. Math. Soc. 145(688) (2000).

  13. Heinonen, J.: Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001.

    Google Scholar 

  14. Heinonen, J., Koskela, P., Shanmugalingam, N. and Tyson, J.T.: ‘Sobolev classes of Banach space-valued functions and quasiconformal mappings’, J. Anal. Math. 85 (2001), 87–139.

    Google Scholar 

  15. Jost, J.: ‘Equilibrium maps between metric spaces’, Calc. Var. Partial Differential Equations 2 (1994), 173–204.

    Google Scholar 

  16. Jost, J.: Nonpositive Curvature: Geometric and Analytic Aspects, Birkhäuser, Basel, 1997.

    Google Scholar 

  17. Korevaar, N.J. and Schoen, R.M.: ‘Sobolev spaces and harmonic maps for metric space targets’, Comm. Anal. Geom. 1 (1993), 561–659.

    Google Scholar 

  18. Koskela, P. and MacManus, P.: ‘Quasiconformal mappings and Sobolev spaces’, Studia Math. 131 (1998), 1–17.

    Google Scholar 

  19. Koskela, P., Shanmugalingam, N. and Tyson, J.T.: ‘Dirichlet forms, Poincaré inequalities, and the Sobolev spaces of Korevaar-Schoen’, available at http://www.math.sunysb.edu/~tyson/papers.html.

  20. Kronz, M.: ‘Some function spaces on spaces of homogeneous type’, Manuscripta Math. 106 (2001), 219–248.

    Google Scholar 

  21. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  22. Otsu, Y. and Shioya, T.: ‘The Riemannian structure of Alexandrov spaces’, J. Differential Geom. 39 (1994), 629–658.

    Google Scholar 

  23. Otsu, Y. and Tanoue, H.: ‘The Riemannian structure of Alexandrov spaces with curvature bounded above’, Preprint.

  24. Ranjbar-Motlagh, A.: ‘Analysis on metric-measure spaces’, Ph.D. thesis, New York University, 1998.

  25. Shanmugalingam, N.: ‘Newtonian spaces: An extension of Sobolev spaces to metric measure spaces’, Rev. Mat. Iberoamericana 16 (2000), 243–279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, SI. Cheeger Type Sobolev Spaces for Metric Space Targets. Potential Analysis 20, 149–175 (2004). https://doi.org/10.1023/A:1026359313080

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026359313080

Navigation