Skip to main content
Log in

Extremal Systems of Points and Numerical Integration on the Sphere

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper considers extremal systems of points on the unit sphere S rR r+1, related problems of numerical integration and geometrical properties of extremal systems. Extremal systems are systems of d n =dim P n points, where P n is the space of spherical polynomials of degree at most n, which maximize the determinant of an interpolation matrix. Extremal systems for S 2 of degrees up to 191 (36,864 points) provide well distributed points, and are found to yield interpolatory cubature rules with positive weights. We consider the worst case cubature error in a certain Hilbert space and its relation to a generalized discrepancy. We also consider geometrical properties such as the minimal geodesic distance between points and the mesh norm. The known theoretical properties fall well short of those suggested by the numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Bannai and R.M. Damerell, Tight spherical design I, Math. Soc. Japan 31 (1979) 199–207.

    Google Scholar 

  2. J.H. Conway and N.J.A. Sloane, Sphere Packings: Lattices and Groups, 3rd ed. (Springer, New York/Berlin, 1999).

    Google Scholar 

  3. J. Cui and W. Freeden, Equidistribution on the sphere, SIAM J. Sci. Comput. 18 (1997) 595–609.

    Google Scholar 

  4. M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923) 228–249.

    Google Scholar 

  5. J. Fliege and U. Maier, The distribution of points on the sphere and corresponding cubature formulae, IMA J. Numer. Anal. 19 (1999) 317–334; http://www.mathematik.unidortmund. de/lsx/fliege/nodes.html.

    Google Scholar 

  6. W. Freeden, T. Gervens and M. Schreiner, Constructive Approximation on the Sphere (Clarendon Press, Oxford, 1998).

    Google Scholar 

  7. M. Ganesh, I. Graham and J. Sivaloganathan, A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity, SIAM J. Numer. Anal. 31 (1994) 1378–1414.

    Google Scholar 

  8. P.J. Grabner, B. Klinger and R. F. Tichy, Discrepancies of point sequences on the sphere and numerical integration in: Multivariate Approximation: Recent Trends and Results, eds. W. Haußmann, K. Jetter and M. Reimer, Mathematical Research, Vol. 101 (Academie-Verlag, Berlin, 1997) pp. 95–112.

    Google Scholar 

  9. R.H. Hardin and N.J.A. Sloane, Spherical designs, ATT Research Laboratory, http://www. research.att.com/ ~njas/sphdesigns.

  10. R.H. Hardin and N.J.A. Sloane, McLaren's improved snub cube and other new spherical designs in three dimensions, Discrete Comput. Geom. 15 (1996) 429–441.

    Google Scholar 

  11. R. Horst and H. Tuy, Global Optimizations-Deterministic Approaches (Springer, Berlin, 1996).

    Google Scholar 

  12. H.N. Mhaskar, F.J. Narcowich and J.D. Ward, Representing and analyzing scattered data on spheres, in: Multivariate Approximation and Applications, eds. D.L.D. Leviaton and A. Pinkus (Cambridge Univ. Press, Cambrige, 2001) pp. 44–72.

    Google Scholar 

  13. H.N. Mhaskar, F.J. Narcowich and J.D. Ward, Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature, Math. Comp. 70 (2001) 1113–1130.

    Google Scholar 

  14. C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, Vol. 17 (Springer, Berlin/New York, 1966).

    Google Scholar 

  15. J. Nocedal and S.J. Wright, Numerical Optimization (Springer, New York, 1999).

    Google Scholar 

  16. A. Okabe, B. Boots and K. Sugihara, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, Chichester/New York, 1992).

    Google Scholar 

  17. D.L. Ragozin, Constructive polynomial approximation on sphere and projective spaces, Trans. Amer. Math. Soc. 162 (1971) 157–170.

    Google Scholar 

  18. E.A. Rahkmanov, E.B. Saff and Y.M. Zhou, Minimal discrete energy on the sphere, Math. Res. Lett. 1 (1994) 647–662.

    Google Scholar 

  19. M. Reimer, Constructive Theory of Multivariate Functions (BI Wissenschaftsverlag, Mannheim, 1990).

    Google Scholar 

  20. M. Reimer, Quadrature rules for the surface integral of the unit sphere based on extremal fundamental systems, Math. Nachrichten 169 (1994) 235–241.

    Google Scholar 

  21. M. Reimer, The average size of certain Gram-determinants and interpolation on non-compact sets, in: Multivariate Approximation and Splines, Mannheim, 1996, International Series of Numerical Mathematics, Vol. 125 (Birkhäuser, Basel, 1998) pp. 235–244.

    Google Scholar 

  22. M. Reimer, Spherical polynomial approximation: A survey, in: Advances in Multivariate Approximation, eds. W. Haußmann, K. Jetter and M. Reimer (Wiley, Berlin, 1999) pp. 231–252.

    Google Scholar 

  23. M. Reimer, Hyperinterpolation on the sphere at the minimal projection order, J. Approx. Theory 104 (2000) 272–286.

    Google Scholar 

  24. M. Reimer and B. Sündermann, A Remez-type algorithm for the calculation of extremal fundamental systems for polynomial spaces on the sphere, Computing 37 (1986) 43–58.

    Google Scholar 

  25. M. Riesz, Eine trigonometrische Interpolationsformel und einige Ungleichungen für polynome, Jahresbericht Deutsches Mathematische Vereinigung 23 (1914) 354–368.

    Google Scholar 

  26. E.B. Saff and A.B.J. Kuijlaars, Distributing many points on a sphere, Math. Intelligencer 19 (1997) 5–11.

    Google Scholar 

  27. W.J.H. Stortelder, J.J.B. Swart and J.D. Pinter, Finding elliptic fekete point sets: Two numerical solution approaches, J. Comput. Appl. Math. 130 (2001) 205–216.

    Google Scholar 

  28. A.E. Taylor, A geometric theorem and its application to biorthogonal systems, Bull. Amer.Math. Soc. 53 (1947) 614–616.

    Google Scholar 

  29. F.G. Tricomi, Vorlesungen über Orthogonalreihen (Springer, Berlin, 1955).

    Google Scholar 

  30. R.S. Womersley and I.H. Sloan, How good can polynomial interpolation on the sphere be?, Adv. Comput. Math. 14 (2001) 195–226.

    Google Scholar 

  31. V.A. Yudin, Covering a sphere and extremal properties of orthogonal polynomials, Discrete Math. Appl. 5 (1995) 371–379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloan, I.H., Womersley, R.S. Extremal Systems of Points and Numerical Integration on the Sphere. Advances in Computational Mathematics 21, 107–125 (2004). https://doi.org/10.1023/B:ACOM.0000016428.25905.da

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACOM.0000016428.25905.da

Navigation