Skip to main content
Log in

Steady Flow of a Navier-Stokes Fluid Around a Rotating Obstacle

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Let ℬ be a body immersed in a Navier-Stokes liquid ℒ that fills the whole space. Assume that ℬ rotates with prescribed constant angular velocity ω. We show that if the magnitude of ω is not “too large”, there exists one and only one corresponding steady motion of ℒ such that the velocity field v(x) and its gradient grad v(x) decay like |x|−1 and |x|−2, respectively. Moreover, the pressure field p(x) and its gradient grad p(x) decay like |x|−2 and |x|−3, respectively. These solutions are “physically reasonable” in the sense of Finn. In particular, they are unique and satisfy the energy equation. This result is relevant to several applications, including sedimentation of heavy particles in a viscous liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Adams, Sobolev Spaces. Academic Press, New York (1975).

    MATH  Google Scholar 

  2. A.S. Advani, Flow and Rheology in Polymer Composites Manufacturing. Elsevier, Amsterdam (1994).

    Google Scholar 

  3. K.I. Babenko, On stationary solutions of the problem of flow past a body of a viscous incompressible fluid. Mat. Sb. 91(133) (1973) 3–27; English transl.: Math. SSSR-Sb. 20 (1973) 1–25.

    MATH  MathSciNet  Google Scholar 

  4. W. Borchers, Zur Stabilität und Faktorisierungsmethode für die Navier-Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. Habilitationsschrift, University of Paderborn (1992).

  5. Z.-M. Chen and T. Miyakawa, Decay properties of weak solutions to a perturbed Navier-Stokes system in Rn. Adv.Math. Sci. Appl. 7(2) (1997) 741–770.

    MATH  MathSciNet  Google Scholar 

  6. R.G. Cox, The steady motion of a particle of arbitrary shape at small Reynolds numbers. J. Fluid Mech. 23 (1965) 625–643.

    Article  ADS  Google Scholar 

  7. P. Deuring, On H 2-estimates of solutions to the Stokes system with an artificial boundary condition. J. Math. Fluid Mech. 4 (2002) 203–236.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. P. Deuring and G.P. Galdi, On the asymptotic behavior of physically reasonable solutions to the stationary Navier-Stokes system in three-dimensional exterior domains with zero velocity at infinity. J. Math. Fluid Mech. 2(4) (2000) 353–364.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Rational Mech. Anal. 19 (1965) 363–406.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. H. Fujita, On the existence and regularity of the steady-state solutions of the Navier-Stokes equation. J. Fac. Sci. Univ. Tokyo (1A) 2 (1961) 59–102.

    Google Scholar 

  11. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Linearized Steady Problems, revised edn. Springer Tracts Nat. Philos. 38. Springer-Verlag, New York (1998).

    Google Scholar 

  12. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Nonlinear Steady Problems, revised edn. Springer Tracts Nat. Philos. 39. Springer-Verlag, New York (1998).

    Google Scholar 

  13. G.P. Galdi, Slow motion of a body in a viscous incompressible fluid with application to particle sedimentation. In: V.A. Solonnikov (ed.), Developments in Partial Differential Equations. Quaderni di Matematica della II Università di Napoli 2 (1998) 2–50.

  14. G.P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications. In: S. Friedlander and D. Serre (eds), Handbook of Mathematical Fluid Mechanics. Elsevier Science (2002) pp. 653–791.

  15. G.P. Galdi, J.G. Heywood and Y. Shibata, On the global existence and convergence to steady state of Navier-Stokes flow past an obstacle that is started from rest. Arch. Rational Mech. Anal. 138 (1997) 307–318.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. G.P. Galdi and A. Vaidya, Translational steady fall of symmetric bodies in a Navier-Stokes liquid, with application to particle sedimentation. J. Math. Fluid Mech. 3(1) (2001) 183–211.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. R.B. Guenther, R.T. Hudspeth and E.A. Thomann, Hydrodynamic forces on submerged rigid bodies - steady flow. J. Math. Fluid Mech. (2002), in press.

  18. T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle. Arch. Rational. Mech. Anal. 150 (1999) 307–348.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. T. Hishida, The Stokes operator with rotation effect in exterior domains. Analysis (Munich) 19 (1999) 51–67.

    MATH  MathSciNet  Google Scholar 

  20. D.D. Joseph, Flow induced microstructure in Newtonian and viscoelastic fluids. In: Proceedings of the Fifth World Congress of Chemical Engineering. Particle Technology Track. 6 (1996) 3–16.

    Google Scholar 

  21. G. Kirchhoff, Ñber die Bewegung eines Rotationskörpers in einer Flüssigkeit. J. Reine Ang. Math. 71 (1869) 237–281.

    Google Scholar 

  22. O.A. Ladyzhenskaya, Investigation of the Navier-Stokes equation for a stationary flow of an incompressible fluid. Uspekhi Mat. Nauk. 14(3) (1959) 75–97 (in Russian).

    MATH  Google Scholar 

  23. O.A. Ladyzhenskaya, N.N. Ural'ceva and V.A. Solonnikov, Linear and Quasilinear Equations of Parabolic Type. Transl. Math. Monographs 23. Amer. Math. Soc., Providence, RI (1968).

    Google Scholar 

  24. H. Lamb, Hydrodynamics, Cambridge Univ. Press (1932).

  25. J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl. 12 (1933) 1–82.

    MATH  MathSciNet  Google Scholar 

  26. J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934) 193–248.

    MATH  MathSciNet  Google Scholar 

  27. S.A. Nazarov and K. Pileckas, On steady Stokes and Navier-Stokes problems with zero velocity at infinity in a three-dimensional exterior domain. J. Math. Kyoto Univ. 40(3) (2000) 475–492.

    MATH  MathSciNet  Google Scholar 

  28. S.A. Nazarov and M. Specovius-Neugebauer, Approximation of exterior boundary value problems for the Stokes system. Asymptotic Anal. 14(3) (1997) 223–255.

    MATH  MathSciNet  Google Scholar 

  29. A. Novotný and M. Padula, Note on decay of solutions of steady Navier-Stokes equations in 3-D exterior domains. Differential Integral Equations 8(7) (1995) 1833–1842.

    MATH  MathSciNet  Google Scholar 

  30. F.K.G. Odqvist, Ñber die Randwertaufgaben der Hydrodynamik Zäher Flüssigkeiten. Math. Z. 32 (1930) 329–375.

    Article  MathSciNet  Google Scholar 

  31. C.W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik. Akad. Verlagsgesellschaft M.B.H., Leipzig (1927).

    MATH  Google Scholar 

  32. H. Schmid-Schonbein and R. Wells, Fluid drop-like transition of erythrocytes under shear. Science 165(3890) (1969) 288–291.

    ADS  Google Scholar 

  33. D. Serre, Chute libre d'un solid dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 40(1) (1987) 99–110.

    Article  MathSciNet  ADS  Google Scholar 

  34. C.G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. Pitman Res. Notes Math. Ser. 360. Longman Sc. Tech. (1997).

  35. G. Stokes, On the effect of internal friction of fluids on the motion of pendulums. Trans. Cambridge Phil. Soc. 9 (1851) 8–85.

    Google Scholar 

  36. B. Tinland, L. Meistermann and G.Weill, Simultaneous measurements of mobility, dispersion, and orientation of DNA during steady-field gel electrophoresis coupling a fluorescence recovery after photobleaching apparatus with a fluorescence detected linear dichroism setup. Phys. Rev. E 61(6) (2000) 6993–6998.

    Article  ADS  Google Scholar 

  37. W. Thomson and P.G. Tait, Natural Philosophy, Vols. 1, 2. Cambridge Univ. Press (1879).

  38. C. Truesdell and W. Noll, Handbuch der Physik, Vol. VIII/3. Springer-Verlag (1965).

  39. H.F. Weinberger, On the steady fall of a body in a Navier-Stokes fluid. Proc. Sympos. Pure Math. 23 (1973) 421–440.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galdi, G.P. Steady Flow of a Navier-Stokes Fluid Around a Rotating Obstacle. Journal of Elasticity 71, 1–31 (2003). https://doi.org/10.1023/B:ELAS.0000005543.00407.5e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ELAS.0000005543.00407.5e

Navigation