Skip to main content
Log in

Minimal Surfaces in the Heisenberg Group

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We investigate the minimal surface problem in the three dimensional Heisenberg group, H, equipped with its standard Carnot–Carathéodory metric. Using a particular surface measure, we characterize minimal surfaces in terms of a sub-elliptic partial differential equation and prove an existence result for the Plateau problem in this setting. Further, we provide a link between our minimal surfaces and Riemannian constant mean curvature surfaces in H equipped with different Riemannian metrics approximating the Carnot–Carathéodory metric. We generate a large library of examples of minimal surfaces and use these to show that the solution to the Dirichlet problem need not be unique. Moreover, we show that the minimal surfaces we construct are in fact X-minimal surfaces in the sense of Garofalo and Nhieu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balogh, Z.: Size of characteristic sets and functions with prescribed gradient, To appear in J. Reine Angew. Math.

  2. Bernstein, S.: Sur un théorè me de géométrie et ses applications aux équations aux déricées partielles du type elliptique, Comm. de la Soc. Math. de Kharkov (2-éme sér) 15 (1915), 38-45.

    Google Scholar 

  3. Capogna, L., Danielli, D. and Garfola, N.: An isoperimetric inequality and the geometric Sobolev embedding for vector fields, Math. Res. Lett. 1(2) (1994), 263-268.

    Google Scholar 

  4. Capogna, L., Danielli, D. and Garfola, N.: The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 2(2) (1994), 203-215.

    Google Scholar 

  5. DeGiorgi, E.: Su una teoria generale della misura (r-1) dimensionale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl. 4(36) (1954), 191-213.

    Google Scholar 

  6. [DGN01] Danielli, D., Garofalo, N. and Nhieu, D. M.: Minimal surfaces, surfaces of constant mean curvature and isoperimetry in Carnot groups, Preprint 2001.

  7. Figueroa, C. B., Mercuri, F. and Pedrosa, R. H. L.: Invariant surfaces of the Heisenberg groups, Ann. Mat. Pura Appl. (4) 177 (1999), 173-194.

    Google Scholar 

  8. Franchi, B., Serapioni, R. and Serra Cassano, F.: Champs de vecteurs, théoréme d'approximation de Meyers-Serrin et phénomè ne de Lavrentev pour des fonctionnelles dégénérées, C.R. Acad. Sci. Paris Sér. I Math 320(6) (1995), 695-698.

    Google Scholar 

  9. Franchi, B., Serapioni, R. and Serra Cassano, F.: Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math 22(4) (1996), 859-890.

    Google Scholar 

  10. Franchi, B., Serapioni, R. and Serra Cassano, F.: Rectifiability and Perimeter in the Heisenberg group, Math. Ann. 321(3) (2001), 479-531.

    Google Scholar 

  11. Garofalo, N. and Nhieu, Duy-Minh: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49(10) (1996), 1081-1144.

    Google Scholar 

  12. Garofalo, N. and Pauls, S. D.: The Bernstein problem in the Heisenberg group, preprint 2002.

  13. Gromov, M.: Structures métriques pour les variétés riemanniennes, In: J. Lafontaine and P. Pansu (eds), Textes mathématiques 1 CEDIC, Paris, 1981.

    Google Scholar 

  14. Gromov, M.: Groups of polynomial growth and expanding maps, I.H.E.S. Publ. Math. (53) (1981), 53-73.

    Google Scholar 

  15. Gromov, M.: Carnot-Carathéodory spaces seen from within, In: Sub-Riemannian Geometry, Progr. Math. 144, Birkhaüser, Basel, 1996, pp. 79-323.

    Google Scholar 

  16. Gilbarg, D. and Trudinger, N. S.: Elliptic Partial Differential Equations of Second order, Springer-Verlag, Berlin, 2001.

    Google Scholar 

  17. Heinonen, J.: Calculus on Carnot groups, In: Fall School in Analysis (Jyväskylä, 1994), Univ. Jyväskylä, Jyväskylä, 1995, pp. 1-31.

    Google Scholar 

  18. Hsiang, Wu-teh and Hsiang, Wu-yi.: On the existence of codimension-one minimal spheres in compact symmetric spaces of rank 2. II, J. Differential Geom. 17(4) (1983, 1982), 583-594.

    Google Scholar 

  19. Hsiang, Wu-yi and Lawson, B. H. Jr.: Minimal submanifolds of low cohomogeneity, J. Differential Geom. 5 (1971), 1-38.

    Google Scholar 

  20. Monti, R. and Cassano, F. S.: Surface measures in Carnot-Carathé odory spaces, Preprint 1999.

  21. Pansu, P.: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. (2) 129(1) (1989), 1-60.

    Google Scholar 

  22. per Tomter: Constant mean curvature surfaces in the Heisenberg group, In: Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Amer. Math. Soc., Providence, RI, 1993, pp. 485-495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauls, S.D. Minimal Surfaces in the Heisenberg Group. Geometriae Dedicata 104, 201–231 (2004). https://doi.org/10.1023/B:GEOM.0000022861.52942.98

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GEOM.0000022861.52942.98

Navigation