Skip to main content
Log in

Phase Transition in the Nearest-Neighbor Continuum Potts Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the present study we establish a phase transition in the nearest-neighbor continuum Potts model. The repulsion between particles of different type acts only on a nearest-neighbor graph, more precisely a subgraph of the Delaunay graph. This work is an adaptation of the Lebowitz and Lieb soft-core continuum Potts model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Baddeley and J. Møller, Nearest-neighbor Markov point processes and random sets, Int. Statist. Rev. 57:89–121 (1989).

    Google Scholar 

  2. E. Bertin, J.-M. Billiot, and R. Drouilhet, Existence of Delaunay pairwise Gibbs point processes with superstable component, J. Statist. Phys. 95:719–744 (1999).

    Google Scholar 

  3. E. Bertin, J.-M. Billiot, and R. Drouilhet, Existence of “nearest-neighbor” Gibbs point models, Adv. Appl. Prob. 31:895–909 (1999).

    Google Scholar 

  4. E. Bertin, J.-M. Billiot, and R. Drouilhet, k-Nearest-neighbor Gibbs point processes, Markov Process. Related Fields 5:219–234 (1999).

    Google Scholar 

  5. E. Bertin, J.-M. Billiot, and R. Drouilhet, Spatial Delaunay Gibbs point processes, Stochastic Models 15:181–199 (1999).

    Google Scholar 

  6. E. Bertin, J.-M. Billiot, and R. Drouilhet, Continuum percolation in the Gabriel graph, Adv. Appl. Prob. 34:689–701 (2002).

    Google Scholar 

  7. A. Bowyer, Computing Dirichlet tessellations, Comput. J. 24:162–166 (1981).

    Google Scholar 

  8. J. Chayes, L. Chayes, and R. Kotecky, The analysis of the Widom-Rowlinson model by stochastic geometric methods, Commun. Math. Phys. 172:551–569 (1995).

    Google Scholar 

  9. R. Connelly, K. Rybnikov, and S. Volkov, Percolation of the loss of tension in an infinite triangular lattice, J. Statist. Phys. 105:143–171 (2001).

    Google Scholar 

  10. G. Döge, K. Mecke, J. Møller, D. Stoyan, and R. Waagepetersen, Grand canonical simulations of hard-disk systems by simulated tempering, Technical Report R-00-2003, Department of Mathematical Sciences, Aalborg University (2000).

  11. H.-O. Georgii, Large deviations and the equivalence of ensembles for Gibbsian particle systems with superstable interaction, Probab. Theory Related Fields 99:171–195 (1994).

    Google Scholar 

  12. H.-O. Georgii and O. Häggström, Phase transition in continuum Potts models, Commun. Math. Phys. 181:507–528 (1996).

    Google Scholar 

  13. H.-O. Georgii and V. Zagrebnov, On the interplay of magnetic and molecular forces in Curie-Weiss ferrofluid models, J. Statist. Phys. 93:79–107 (1998).

    Google Scholar 

  14. C. Geyer, Likelihood inference for spatial point processes, in Stochastic Geometry, Likelihood and Computation, W. S. Kendall, O. E. Barndoff-Nielsen, and M. N. M. van Lieshout, eds. (Chapman & Hall, London, 1999), pp. 141–172.

    Google Scholar 

  15. C. Geyer and J. Møller, Simulation procedures and likelihood inference for spatial point processes, Scand. J. Statist. 21:359–373 (1994).

    Google Scholar 

  16. O. Häggström, Markov random fields and percolation on general graphs, Adv. Appl. Prob. 32:39–66 (2000).

    Google Scholar 

  17. O. Häggström and R. Meester, Nearest neighbor and hard sphere models in continuum percolation, Rand. Struct. Algorithms 9:295–315 (1996).

    Google Scholar 

  18. J. Lebowitz and E. Lieb, Phase transition in a continuum classical system with finite interactions, Phys. Lett. A 39:98–100 (1972).

    Google Scholar 

  19. J. Lebowitz, A. Mazel, and E. Presutti, Liquid vapor phase transition for systems with finite range interactions, J. Statist. Phys. 516:955–1025 (1999).

    Google Scholar 

  20. R. Lyons and Y. Peres, Probability on Trees and Networks (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  21. S. Mase, J. Møller, D. Stoyan, R. Waagepetersen, and G. Döge, Packing densities and simulated tempering for hard-core gibbs point processes, Ann. Inst. Statist. Math. 53:661–680 (2001).

    Google Scholar 

  22. R. W. J. Meester and R. Roy, Continuum Percolation (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  23. J. Møller, Extensions of the Swendsen-Wang algorithm for simulating spatial point process, Technical Report 246, Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus (1992).

  24. J. Møller, Lectures on random Voronoi tessellations, in Lecture Notes in Statistics, Vol. 87 (Springer-Verlag, New York, 1994).

    Google Scholar 

  25. C. Preston, Spatial birth and death processes, Bull. Int. Statist. Inst. 46:371–391 (1977).

    Google Scholar 

  26. B. Ripley, Modelling spatial patterns (with discussion), J. R. Statist. Soc. B 39:172–212 (1977).

    Google Scholar 

  27. D. Ruelle, Existence of a phase transition in a continuous classical system, Phys. Rev. Lett. 27:1040–1041 (1971).

    Google Scholar 

  28. A. van Enter, R. Fernández, and A. Sokal, Regularity properties and pathologies of position-space renormalization-group transformations, J. Statist. Phys. 72:879–1152 (1994).

    Google Scholar 

  29. B. Widom and J. Rowlinson, New model for the study of liquid-vapor transitions, J. Chem. Phys. 52:1670–1684 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertin, E., Billiot, JM. & Drouilhet, R. Phase Transition in the Nearest-Neighbor Continuum Potts Model. Journal of Statistical Physics 114, 79–100 (2004). https://doi.org/10.1023/B:JOSS.0000003056.84984.8b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000003056.84984.8b

Navigation