Skip to main content
Log in

A Guide to Stochastic Löwner Evolution and Its Applications

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This article is meant to serve as a guide to recent developments in the study of the scaling limit of critical models. These new developments were made possible through the definition of the Stochastic Löwner Evolution (SLE) by Oded Schramm. This article opens with a discussion of Löwner's method, explaining how this method can be used to describe families of random curves. Then we define SLE and discuss some of its properties. We also explain how the connection can be made between SLE and the discrete models whose scaling limits it describes, or is believed to describe. Finally, we have included a discussion of results that were obtained from SLE computations. Some explicit proofs are presented as typical examples of such computations. To understand SLE sufficient knowledge of conformal mapping theory and stochastic calculus is required. This material is covered in the appendices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, 2nd ed. (McGraw–Hill, New York, 1966).

    Google Scholar 

  2. L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory (McGraw–Hill, New York, 1973).

    Google Scholar 

  3. R. B. Ash and C. A. Doléans-Dade, Probability & Measure Theory, 2nd ed. (Academic Press, San Diego, 2000).

    Google Scholar 

  4. M. Bauer and D. Bernard, SLEϰ growth processes and conformal field theories, Phys. Lett. B 543:135–138 (2002); arXiv: math-ph/0206028.

    Google Scholar 

  5. M. Bauer and D. Bernard, Conformal field theories of Stochastic Loewner evolutions, Comm. Math. Phys. 239:493–521 (2003); arXiv: hep-th/0210015.

    Google Scholar 

  6. M. Bauer and D. Bernard, SLE martingales and the Virasoro algebra, Phys. Lett. B 557:309–316 (2003); arXiv: hep-th/0301064.

    Google Scholar 

  7. M. Bauer and D. Bernard, Conformal transformations and the SLE partition function martingale, arXiv: math-ph/0305061.

  8. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

    Google Scholar 

  9. R. J. Baxter, q colourings of the triangular lattice, J. Phys. A 19:2821–2839 (1986).

    Google Scholar 

  10. R. J. Baxter, S. B. Kelland, and F. Y. Wu, Equivalence of the Potts model or Whitney polynomial with an ice-type model, J. Phys. A 9:397–406 (1976).

    Google Scholar 

  11. V. Beffara, Hausdorff dimensions for SLE6 (2002); arXiv: math.PR/0204208.

  12. V. Beffara, The dimension of the SLE curves (2002); arXiv: math.PR/0211322.

  13. F. Camia and C. M. Newman, Continuum nonsimple loops and 2D critical percolation (2003); arXiv: math.PR/0308122.

  14. J. Cardy, Conformal invariance, in Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987), pp. 55–126.

    Google Scholar 

  15. J. Cardy, Critical percolation in finite geometries, J. Phys. A 25:L201-L206 (1992).

    Google Scholar 

  16. J. Cardy, Stochastic Loewner evolution and Dyson's circular ensembles, J. Phys. A 36:L379-L408 (2003); arXiv: math-ph/0301039.

    Google Scholar 

  17. B. Duplantier, Harmonic measure exponents for two-dimensional percolation, Phys. Rev. L. 82:3940–3943 (1999).

    Google Scholar 

  18. B. Duplantier, Conformally invariant fractals and potential theory, Phys. Rev. L. 84:1363–1367 (2000).

    Google Scholar 

  19. B. Duplantier and K-H. Kwon, Conformal invariance and intersections of random walks, Phys. Rev. L. 61:2514–2517 (1988).

    Google Scholar 

  20. R. Friedrich and W. Werner, Conformal fields, restriction properties, degenerate representations and SLE, C. R. Acad. Sci. Paris Sér. I 335:947–952 (2002); arXiv: math.PR/0209382.

    Google Scholar 

  21. R. Friedrich and W. Werner, Conformal restriction, highest-weight representations and SLE, Comm. Math. Phys. (2003), to appear; arXiv: math-ph/0301018.

  22. C. M. Fortuin and P. W. Kasteleyn, On the random cluster model 1: Introduction and relation to other models, Physica 57:536–564 (1972).

    Google Scholar 

  23. T. W. Gamelin, Complex Analysis (Springer-Verlag, New York, 2000).

    Google Scholar 

  24. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (Springer-Verlag, New York, 1983).

    Google Scholar 

  25. G. Grimmett and D. Stirzaker, Probability and Random Processes, 3rd ed. (Oxford University Press, Oxford, 2001).

    Google Scholar 

  26. L. P. Kadanoff, Scaling laws for Ising models near Tc, Physics 2:263–271 (1966).

    Google Scholar 

  27. T. Kennedy, Monte Carlo tests of SLE predictions for the 2D self-avoiding walk (2001); arXiv: math.PR/0112246.

  28. T. Kennedy, Conformal invariance and Stochastic Loewner evolution predictions for the 2D self-avoiding walk—Monte Carlo tests (2002); arXiv: math.PR/0207231.

  29. G. F. Lawler, Introduction to Stochastic Processes (Chapman & Hall, New York, 1995).

    Google Scholar 

  30. G. F. Lawler, Hausdorff dimension of cut points for Brownian motion, Electron. J. Probab. 1:1–20 (1996).

    Google Scholar 

  31. G. F. Lawler, The dimension of the frontier of planar Brownian motion, Electron. Comm. Probab. 1:29–47 (1996).

    Google Scholar 

  32. G. F. Lawler, Geometric and fractal properties of Brownian motion and random walk paths in two and three dimensions, in Random Walks (Budapest, 1998), Bolyai Society Mathematical Studies, Vol. 9 (1999), pp. 219–258.

    Google Scholar 

  33. G. F. Lawler, An introduction to the Stochastic Loewner evolution; available online at URL http://www.math.duke.edu/∼jose/papers.html (2001).

  34. G. F. Lawler and W. Werner, Intersection exponents for planar Brownian motion, Ann. Probab. 27:1601–1642 (1999).

    Google Scholar 

  35. G. F. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents I: Half-plane exponents, Acta Math. 187:237–273 (2001); arXiv: math.PR/9911084.

    Google Scholar 

  36. G. F. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents II: Plane exponents, Acta Math. 187:275–308 (2001); arXiv: math.PR/0003156.

    Google Scholar 

  37. G. F. Lawler, O. Schramm, and W. Werner, Values of Brownian intersection exponents III: Two-sided exponents, Ann. Inst. H. Poincaré Statist. 38:109–123 (2002); arXiv: math.PR/0005294.

    Google Scholar 

  38. G. F. Lawler, O. Schramm, and W. Werner, Analyticity of intersection exponents for planar Brownian motion, Acta Math. 189:179–201 (2002); arXiv: math.PR/0005295.

    Google Scholar 

  39. G. F. Lawler, O. Schramm, and W. Werner, One-arm exponent for critical 2D percolation, Electron. J. Probab. 7:13(2001); arXiv: math.PR/0108211.

    Google Scholar 

  40. G. F. Lawler, O. Schramm, and W. Werner, Conformal invariance of planar loop-erased random walks and uniform spanning trees, Ann. Probab. (2001), to appear; arXiv: math.PR/0112234.

  41. G. F. Lawler, O. Schramm, and W. Werner, On the scaling limit of planar self-avoiding walk, in Fractal Geometry and Application. A Jubilee of Benoit Mandelbrot, AMS Proc. Symp. Pure Math. (2002), to appear; arXiv: math.PR/0204277.

  42. G. F. Lawler, O. Schramm, and W. Werner, Conformal restriction: The chordal case, J. Amer. Math. Soc. 16:917–955 (2003); arXiv: math.PR/0209343.

    Google Scholar 

  43. K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89:103–121 (1923).

    Google Scholar 

  44. S-K. Ma, Modern theory of critical phenomena, in Frontiers in Physics, Vol. 46 (Benjamin, Reading, 1976).

    Google Scholar 

  45. B. Nienhuis, Exact critical point and exponents of the O(n) model in two dimensions, Phys. Rev. L. 49:1062–1065 (1982).

    Google Scholar 

  46. B. Nienhuis, Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb Gas, J. Stat. Phys. 34:731–761 (1984). B. NienhuisCoulomb Gas formulation of two-dimensional phase transitions, in Phase Transitions and Critical Phenomena, Vol. 11, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987), pp. 1–53.

    Google Scholar 

  47. B. Nienhuis, Locus of the tricritical transition in a two-dimensional q-state Potts model, Physica A 177:109–113 (1991).

    Google Scholar 

  48. F. Oberhettinger, Hypergeometric functions, in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed., Chap. 15, M. Abramowitz and I. Stegun, eds. (Wiley, New York, 1972), pp. 555–566.

    Google Scholar 

  49. P. Pfeuty and G. Toulouse, Introduction to the Renormalization Group and to Critical Phenomena (Wiley, New York, 1977).

    Google Scholar 

  50. C. Pommerenke, Boundary Behaviour of Conformal Maps (Springer-Verlag, New York, 1992).

    Google Scholar 

  51. S. Rohde and O. Schramm, Basic properties of SLE, Ann. Math. (2001), to appear; arXiv: math.PR/0106036.

  52. H. Saleur and B. Duplantier, Exact determination of the percolation hull exponent in two dimensions, Phys. Rev. Lett. 58:2325–2328 (1987).

    Google Scholar 

  53. O. Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118:221–288 (2000); arXiv: math.PR/9904022.

    Google Scholar 

  54. O. Schramm, A percolation formula, Electron. Comm. Probab. 6:115–120 (2001); arXiv: math.PR/0107096.

    Google Scholar 

  55. O. Schramm and S. Sheffield, The harmonic explorer and its convergence to SLE(4) (2003); arXiv: math.PR/0310210.

  56. S. Smirnov, Critical percolation in the plane: Conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333:239–244 (2001). S. SmirnovA longer version is available at URL http://www.math.kth.se/∼stas/papers//

    Google Scholar 

  57. S. Smirnov and W. Werner, Critical exponents for two-dimensional percolation, Math. Res. Lett. 8:729–744 (2001); arXiv: math.PR/0109120.

    Google Scholar 

  58. W. Werner, Random planar curves and Schramm–Löwner evolutions, Lecture Notes from the 2002 Saint-Flour Summer School (Springer, 2003), to appear; arXiv: math.PR/0303354.

  59. W. Werner, Conformal restriction and related questions (2003); arXiv: math.PR/0307353.

  60. D. B. Wilson, Generating random spanning trees more quickly than the cover time, in Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996) (ACM, New York, 1996), pp. 296–303.

    Google Scholar 

  61. K. G. Wilson and J. Kogut, The renormalization group and the ε expansion, Phys. Rep. 12:75–199 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kager, W., Nienhuis, B. A Guide to Stochastic Löwner Evolution and Its Applications. Journal of Statistical Physics 115, 1149–1229 (2004). https://doi.org/10.1023/B:JOSS.0000028058.87266.be

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOSS.0000028058.87266.be

Navigation