Skip to main content
Log in

On the Markov–Krein Identity and Quasi-Invariance of the Gamma Process

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We present a simple proof of the Markov–Krein identity for distributions of means of linear functionals of the Dirichlet process and its various generalizations. The key idea is to use the representation of the Dirichlet process as the normalized gamma process and fundamental properties of gamma processes. Bibliography: 19 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Borodin and G. Olshanski, “Distributions on partitions, point processes and the hypergeometric kernel,” Comm. Math. Phys., 211,No. 2, 335–358 (2000).

    Google Scholar 

  2. D. M. Cifarelli and E. Regazzini, “Some remarks on the distribution functions of means of a Dirichlet process,” Ann. Statist., 18, 429–442 (1990).

    Google Scholar 

  3. P. Diaconis and J. Kemperman, “Some New Tools for Dirichlet Priors,” in: Bayesian Statistics 5, J. M. Bernardino, J. O. Berger, A. P. Dawid and A. F. M. Smith (eds.), Oxford University Press (1996), pp. 97–106.

  4. T. S. Ferguson, “A Bayesian analysis of some nonparametric problems,” Ann. Statist., 1, 209–230 (1973).

    Google Scholar 

  5. T. S. Ferguson and M. J. Klass, “A representation of independent increment processes without Gaussian components,” Ann. Math. Statist., 43, 1634–1643 (1972).

    Google Scholar 

  6. S. V. Kerov, “Transition probabilities of continuous Young diagrams and Markov moment problem,” Funct. Anal. Appl., 27, 32–49 (1993).

    Google Scholar 

  7. S. V. Kerov, “Interlacing Measures,” Amer. Math. Soc. Transl. (2), 181, 35–83 (1998).

    Google Scholar 

  8. S. V. Kerov and N. V. Tsilevich, “The Markov-Krein correspondence in several dimensions,” PDMI Preprint 1/1998.

  9. J. F. C. Kingman, “Random discrete distributions,” J. Roy. Statist. Soc. B, 37, 1–22 (1975).

    Google Scholar 

  10. M. G. Krein and A. A. Nudelman, The Markov Moment Problem and Extremal Problems [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  11. E. Lukacs, “A characterization of the gamma distribution,” Annals Math. Stat., 26, 319–324 (1965).

    Google Scholar 

  12. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford (1979).

    Google Scholar 

  13. A. A. Markov, “Nouvelles applications des fractions continues,” Math. Ann., 47, 579–597 (1896).

    Google Scholar 

  14. J. Pitman, “Some developments of the Blackwell-MacQueen urn scheme,” in: Statistics, Probability and Game theory, T. S. Ferguson, L. S. Shapley, J. B. MacQueen (eds.), IMS Lecture Notes — Monograph series, 30 (1996), pp. 245–267.

  15. J. Pitman and M. Yor, “The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator,” Ann. Prob., 25, 855–900 (1997).

    Google Scholar 

  16. N. V. Tsilevich, “Distributions of mean values for some random measures,” Zap. Nauchn. Semin. POMI, 240, 268–279 (1997).

    Google Scholar 

  17. N. V. Tsilevich and A. M. Vershik, “Quasi-invariance of the gamma process and multiplicative properties of the Poisson-Dirichlet measures,” C. R. Acad. Sci. Paris, Série I, 329,No. 2, 163–168 (1999).

    Google Scholar 

  18. N. V. Tsilevich, A. M. Vershik, and M. Yor, “Distinguished properties of the gamma process and related topics,” Prépublications du Laboratoire de Probabilités et Modèles aléatoires, No. 575 (2000).

  19. N. V. Tsilevich, A. M. Vershik, and M. Yor, “An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process,” J. Funct. Anal, 185,No. 1, 274–296 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vershik, A.M., Yor, M. & Tsilevich, N. On the Markov–Krein Identity and Quasi-Invariance of the Gamma Process. Journal of Mathematical Sciences 121, 2303–2310 (2004). https://doi.org/10.1023/B:JOTH.0000024611.30457.a8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTH.0000024611.30457.a8

Keywords

Navigation