Skip to main content
Log in

Limit Theorems for Multiplicative Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let W be a non-negative random variable with EW=1, and let {W i } be a family of independent copies of W, indexed by all the finite sequences i=i 1⋅⋅⋅i n of positive integers. For fixed r and n the random multiplicative measure μ n r has, on each r-adic interval \(A_{i_1 ...i_n }^r \) at nth level, the density \(W_{i_1 } \cdot \cdot \cdot W_{i_1 \ldots i_n } \) with respect to the Lebesgue measure on [0,1]. If EW log W<log r, the sequence {μ n r } n converges a.s. weakly to the Mandelbrot measure μ r . For each fixed 1≤n≤∞, we study asymptotic properties for the sequence of random measures {μ n r } r as r→∞. We prove uniform laws of large numbers, functional central limit theorems, a functional law of iterated logarithm, and large deviation principles. The function-indexed processes \(\{ \mu _r^n (f),\;f \in G\}\) is a natural extension to a tree-indexed process at nth level of the usual smoothed partial-sum process corresponding to n=1. The results extend the classical ones for {μ 1 r } r , and the recent ones for the masses of {μ r } r established in Ref. 23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander, S. A., and Pyke, R. (1986). A uniform central limit theorem for set-indexed partial-sum processes with finite variance. Ann. Probab. 14, 582–597.

    Google Scholar 

  2. Barral, J. (1999). Moments, continuité, et analyse multifractale des martingales de Mandelbrot. Probab. Theory Related Fields 113, 535–569.

    Google Scholar 

  3. Bass, R. F. (1985). Law of iterated logarithm for set-indexed partial sum processes with finite variance. Z. Wahrsch. Verw. Gebiete 70, 591–608.

    Google Scholar 

  4. Bass, R. F., and Pyke, R. (1984). A strong law of large numbers for partial-sum processes indexed by sets. Ann. Probab. 12, 268–271.

    Google Scholar 

  5. Biggins, J. D. (1992). Uniform convergence of martingales in the branching random walk. Ann. Probab. 20, 137–151.

    Google Scholar 

  6. Breiman, L. (1992). Probability. Classics in Applied Mathematics 7, SIAM 1992.

  7. Choi, B. D., and Sung, S. H. (1987). Almost sure convergence theorems of weighted sums of random variables. Stochastic Anal. Appl. 5, 365–377.

    Google Scholar 

  8. Chow, Y. S., and Teicher, H. (1978). Probability: Independence, Interchangeability, and Martingales, Springer, New York.

    Google Scholar 

  9. Durrett, R., and Liggett, T. (1983). Fixed points of the smoothing transformation. Z. Wahrsch. Verw. Gebeite 64, 275–301.

    Google Scholar 

  10. Dembo, A., and Zajic, T. (1995). Uniform large and moderate deviations for functional empirical processes. Stochastic Process. Appl. 67, 195–211.

    Google Scholar 

  11. Dembo, A., and Zeitouni, O. (1998). Large Deviations Techniques and Applications, Springer, New York.

    Google Scholar 

  12. Eichelsbacher, P., and Schmock, U. (1998). Exponential approximations in completely regular topological spaces and extensions of Sanov's theorem. Stochastic Process. Appl. 77, 233–251.

    Google Scholar 

  13. Etemadi, N. (1981). An elementary proof of the strong law of large numbers. Z. Wahrsch. Verw. Gebiete 55, 119–122.

    Google Scholar 

  14. Gaenssler, P., and Ziegler, K. (1994). On function-indexed partial-sum processes. In Grigelionis, B., et al. (eds.), Prob. Theory and Math. Stat., VSP/TEV Vilnius, pp. 285–311.

  15. Gaenssler, P., and Ziegler, K. (1994a). A uniform law of large-numbers for set-indexed processes with applications to empirical and partial-sum processes. In Probability in Banach Spaces, Vol.9, Birkhäuser, Boston, pp. 385–400.

    Google Scholar 

  16. Guivarc'h, Y. (1990). Sur une extension de la notion de loi semi-stable. Ann. IHP 26, 261–285.

    Google Scholar 

  17. Kahane, J. P., and Peyrière, J. (1976). Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22, 131–145.

    Google Scholar 

  18. Lacey, M. (1989). Law of the iterated logarithm for partial sum processes indexed by functions. J. Theoret. Probab. 2, 377–398.

    Google Scholar 

  19. Ledoux, M., and Talagrand, M. (1991). Probability in Banach Spaces, Springer-Verlag, New York.

    Google Scholar 

  20. Liu, Q. (1998). Fixed points of a generalized smoothing transformation and applications to branching random walks. Adv. Appl. Probab. 30, 85–112.

    Google Scholar 

  21. Liu, Q. (2000). On generalized multiplicative cascades. Stochastic Process. Appl. 86, 263–286.

    Google Scholar 

  22. Liu, Q. (2001). Asymptotic properties and absolute continuity of laws stable by random weighted mean. Stochastic Process. Appl. 95, 83–107.

    Google Scholar 

  23. Liu, Q., and Rouault, A. (2000). Limit theorems for Mandelbrot's multiplicative cascades. Ann. Appl. Probab. 10, 218–231.

    Google Scholar 

  24. Mandelbrot, B. (1974a). Multiplications aléatoires et distributions invariantes par moyenne pondérée aléatoire. C. R. Acad. Sci. Paris Sér. I Math. 278, 289–292 and 355–358.

    Google Scholar 

  25. Mandelbrot, B. (1974b). Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331–333.

    Google Scholar 

  26. Massart, P. (2000). About the constants in Talagrand's concentration inequalities for empirical processes. Ann. Probab. 28, 863–884.

    Google Scholar 

  27. Najim, J. (2002). A Cramér type theorem for weighted empirical means. Electron. J. Probab. 7(4), 1–32.

    Google Scholar 

  28. Petrov, V. V. (1975). Sums of Independent Random Variables, Springer-Verlag, Berlin.

    Google Scholar 

  29. Pollard, D. (1984). Convergence of Stochastic Processes, Springer, Berlin.

    Google Scholar 

  30. Rogers, L. C. G., and Williams, D. (1994). Diffusions, Markov Processes, and Martingales, Vol.1, John Wiley and Sons, Chichester. Reprint of the second edition (1994), Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000.

    Google Scholar 

  31. Strassen, V. (1964). An invariance principle for the law of iterated logarithm. Z. Wahrsch. Verw. Gebiete 3, 211–226.

    Google Scholar 

  32. Talagrand, M. (1996). New concentration inequalities in product spaces. Invent. Math. 126, 503–563.

    Google Scholar 

  33. van der Vaart, A. W., and Wellner, J. A. (1996). Weak Convergence and Empirical Processes, Springer, New York.

    Google Scholar 

  34. Waymire, E. C., and Williams, D. (1996). A cascade decomposition theory with applications to Markov and exchangeable cascades. Trans. Amer. Math. Soc. 348, 585–632.

    Google Scholar 

  35. Wu, L. (1994). Large deviations, moderate deviations, and LIL for empirical processes. Ann. Probab. 22, 17–27.

    Google Scholar 

  36. Yurinskii (1977). On the error of the Gaussian approximation for convolutions. Theory Probab. Appl. XXII, 236–247.

    Google Scholar 

  37. Ziegler, K. (1997). Functional central limit theorems for triangular arrays of function-indexed processes under uniformly integrated entropy conditions. J. Multivariate Anal. 62, 233–272.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Rouault.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Rio, E. & Rouault, A. Limit Theorems for Multiplicative Processes. Journal of Theoretical Probability 16, 971–1014 (2003). https://doi.org/10.1023/B:JOTP.0000012003.49768.f6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTP.0000012003.49768.f6

Navigation