Skip to main content
Log in

Boundaries and Harmonic Functions for Random Walks with Random Transition Probabilities

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

The usual random walk on a group (homogeneous both in time and in space) is determined by a probability measure on the group. In a random walk with random transition probabilities this single measure is replaced with a stationary sequence of measures, so that the resulting (random) Markov chains are still space homogeneous, but no longer time homogeneous. We study various notions of measure theoretical boundaries associated with this model and establish an analogue of the Poisson formula for (random) bounded harmonic functions. Under natural conditions on transition probabilities we identify these boundaries for several classes of groups with hyperbolic properties and prove the boundary triviality (i.e., the absence of non-constant random bounded harmonic functions) for groups of subexponential growth, in particular, for nilpotent groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bridson, M. R., and Haefliger, A. (1999). Metric spaces of Non-Positive Curvature, Springer-Verlag New York.

    Google Scholar 

  2. Cornfeld, I. P., Fomin, S. V., and Sinai Ya. G., (1982). Ergodic Theory Springer-Verlag New York.

    Google Scholar 

  3. Cartwright, D. I., and Soardi, P. M., (1989). Convergence to ends for random walks on the automorphism group of a tree. Proc. Amer. Math. Soc. 107, 817–823.

    Google Scholar 

  4. Derriennic, Y. (1976). Lois “zé ro ou deux ”pour les processus de Markov, applications aux marches alé atoires. Ann. Inst. H. Poincaré , Sect. B 12, 111–129.

    Google Scholar 

  5. Derriennic, Y. (1980). Quelques applications du thé orè me ergodique sous-additif. Asté risque 74, 183–201.

    Google Scholar 

  6. Derriennic, Y. (1986). Entropie, thé orè mes limites et marches alé atoires. Springer Lecture Notes in Math. 1210, 241–284.

    Google Scholar 

  7. Feldman J., and Moore, C. C. (1977). Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Am. Math. Soc. 234, 289–324.

    Google Scholar 

  8. Furstenberg, H. (1963). A Poisson formula for semi-simple Lie groups. Ann. Math. 77, 335–386.

    Google Scholar 

  9. Furstenberg, H. (1971). Random Walks and Discrete Subgroups of Lie Groups. Adv. Probab. Relat. Top. vol. 1, Dekker New York, 3–63.

    Google Scholar 

  10. Greschonig, G. and Schmidt, K. (2000). Ergodic decomposition of quasi-invariant probability measures. Colloq. Math. 84/85, 495–514.

    Google Scholar 

  11. Guivarc'h, Y. (1980). Sur la loi des grands nombres et le rayon spectral d 'une marche alé atoire Asté risque 74, 47–98.

  12. Kaimanovich, V. A. (1991). Poisson boundaries of random walks on discrete solvable groups. In Heyer, H. (ed. ), (Proceedings of Conference on Probability Measures on Groups X, (1990), Oberwolfach), Plenum, New York, pp. 205–238.

    Google Scholar 

  13. Kaimanovich, V. A. (1992). Measure-theoretic boundaries of Markov chains. In Picardello, M. A. (ed.), 0–2 Laws and Entropy, (Proceedings of the Conference on Harmonic Analysis and Discrete Potential Theory, 1991, Frascati), Plenum, New York, pp. 145–180.

    Google Scholar 

  14. Kaimanovich, V. A. (1995). The Poisson boundary of covering Markov operators. Israel J. Math. 89, 77–134.

    Google Scholar 

  15. Kaimanovich, V. A. (1996). Boundaries of invariant Markov operators: The identification problem Ergodic Theory of ℤ d-Actions (Proceedings of the Warwick Symposium 1993-4), Pollicott, M. and Schmidt, K. (eds. ), London Mathematics Society Lecture Note Series, Vol. 228, Cambridge Univ. Press, Cambridge, pp. 127–176.

    Google Scholar 

  16. Kaimanovich, V. A. (2000). The Poisson formula for groups with hyperbolic properties. Ann. Math. 152, 659–692.

    Google Scholar 

  17. Kalikow, S. (1981). Generalized random walk in a random environment. Ann. Prob. 9, 753–768.

    Google Scholar 

  18. Kifer, Y. (1986). Ergodic Theory of Random Transformations, Birkhä user, Boston.

    Google Scholar 

  19. Kifer, Y. (1996). Perron-Frobenius theorem, large deviations, and random perturbations in random environments. Math. Zeit 222, 677–698.

    Google Scholar 

  20. Kifer, Y. (2001). “Random ”random matrix products. J. Anal. Math. 83, 41–88.

    Google Scholar 

  21. Kozlov, S. M., and Molchanov, S. A. (1984). Conditions for the applicability of the central limit theorem to random walks on a lattice. Soviet Math. Dokl. 30, 410–413.

    Google Scholar 

  22. Karlsson, A., Margulis, G. A. (1999). A multiplicative ergodic theorem and nonpositively curved spaces. Comm. Math. Phys. 208, 107–123.

    Google Scholar 

  23. Krengel, U. (1985). Ergodic Theorems, de Gruyter, Berlin.

    Google Scholar 

  24. Kramli, A., and Szasz, D. (1983). Random walks with internal degrees of freedom. I. Local limit theorems. Z. Wahrsch. Verw. Gebiete 63, 85–95.

    Google Scholar 

  25. Kaloshin, V. Yu., and Sinai, Ya. G. (2000). Simple random walks along orbits of Anosov diffeomorphisms. Tr. Mat. Inst. Steklova 228, 236–245.

    Google Scholar 

  26. Kaimanovich, V. A., and Vershik, A. M. (1983). Random walks on discrete groups: Boundary and entropy. Ann. Probab. 11, 457–490.

    Google Scholar 

  27. Lin, M., Rubshtein, B.-Z., and Wittmann R. (1994). Limit theorems for random walks with dynamical random transitions. Probab. Th. Rel. Fields 100, 285–300.

    Google Scholar 

  28. Mindlin, D. S., and Rubshtein, B.-Z. (1988). Convolution of random measures on a compact group. Th. Probab. Appl. 33, 355–357.

    Google Scholar 

  29. Mindlin, D. S., and Rubshtein, B.-Z. (1994). Convolutional attractors of stationary sequences of random measures on compact groups. Ann. Inst. H. Poincaré 30, 213–233.

    Google Scholar 

  30. Orey, S. (1991). Markov chains with stochastically stationary transition probabilities. Ann. Probab. 19, 907–928.

    Google Scholar 

  31. Revuz, D. (1984). Markov Chains, 2nd ed., North-Holland, Amsterdam.

  32. Rokhlin, V. A. (1949/1952). On the fundamental ideas of measure theory. Mat. Sbornik N. S. 25(67), 107–150 (Russian); English Transl. in Am. Math. Soc. Translations 71, 1–55.

    Google Scholar 

  33. Rokhlin, V. A. (1967). Lectures on the entropy theory of measure preserving transformations. Russian Math. Surveys 22 (5), 1–52.

    Google Scholar 

  34. Rubshtein, B.-Z. (1995). Convolutions of random measures on compact groups. J. Theor. Probab. 8, 523–538.

    Google Scholar 

  35. Woess, W. (1993). Fixed sets and free subgroups of groups acting on metric spaces. Math. Zeit. 214, 425–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaimanovich, V.A., Kifer, Y. & Rubshtein, BZ. Boundaries and Harmonic Functions for Random Walks with Random Transition Probabilities. Journal of Theoretical Probability 17, 605–646 (2004). https://doi.org/10.1023/B:JOTP.0000040291.80182.65

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTP.0000040291.80182.65

Navigation