Skip to main content
Log in

Prokhorov Blocks and Strong Law of Large Numbers Under Rearrangements

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We find conditions on a sequence of random variables to satisfy the strong law of large numbers (SLLN) under a rearrangement. It turns out that these conditions are necessary and sufficient for the permutational SLLN (PSLLN). By PSLLN we mean that the SLLN holds under almost all simple permutations within blocks the lengths of which grow exponentially (Prokhorov blocks). In the case of orthogonal random variables it is shown that Kolmogorov's condition, that is known not to be sufficient for SLLN, is actually sufficient for PSLLN. It is also shown that PSLLN holds for sequences that are strictly stationary with finite first moments. In the case of weakly stationary sequences a Gaposhkin result implies that SLLN and PSLLN are equivalent. Finally we consider the case of general norming and generalization of the Nikishin theorem. The methods of proof uses on the one hand the idea of Prokhorov blocks and Garsia's construction of product measure on the space of simple permutations, and on the other hand, a maximal inequality for permutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bourgain, J. (1989). On Kolmogorov' rearrangement problem for orthogonal systems and Garsia' conjecture. Lect. Notes Math. 1376, 209–250.

    Google Scholar 

  2. Chobanyan, S. (1994). Convergence a. s. of rearranged series in Banach spaces and associated inequalities. In Hoffman-Jorgensen, J., Kuelbs, J., and J., Marcus, M. B. (eds), Prob. in Banach spaces 9, Birkhauser, Boston.

    Google Scholar 

  3. Chobanyan, S. A., and Giorgobiani, G. J. (1991). Almost sure permutational convergence of vector random series and Kolmogorov' problem, In Honor of Yu. V. Prokhorov, (ed.), Vol. 1, New trends in probability and statistics (Proceedings of the 23rd Bakuriani Colloq) Bakuriani/USSR 1990, 93–105.

  4. Chobanyan, S., and Mandrekar, V. (1998). Almost everywhere convergence and SLLN under rearrangements, In Karattzas, I., Rajput, B., and Taqqu, M. S. (eds. ), Stochastic Processes and Related Topics: In memory of Stamatis Cambanis 1943–1995, Birkhauser, Boston.

    Google Scholar 

  5. Chobanyan, S., and Mandrekar, V. (2000). On Kolmogorov SLLN under rearrangements for “orthogonal” random variables in a B-space. J. Theoret. Probab. 13(1), 135–139.

    Google Scholar 

  6. Csorgo, S., Tandori, K., and Totek, W. (1983). On strong law of large numbers for pairwise independent random variables. Acta Math. Hung. 42, 319–330.

    Google Scholar 

  7. Durett, R. (1996). Probability: Theory and Examples. Duxbury Press.

  8. Erdö s, P. (1949). On the strong law of large numbers. Trans. Amer. Math. Soc. 67, 51–56.

    Google Scholar 

  9. Gal, I., and Koksma, J. (1950). Sur l 'ordre de grandeur des fonctionnes sommables. In: Proc. Koninkl. Nederland. Ak. Wet., A., 53, 192–207.

    Google Scholar 

  10. Gaposhkin, V. F. (1977). Criteria for strong law of large numbers for some classes of second order stationary processes and homogeneous random elds. Theory Probab. Appl. 22, 286–309.

    Google Scholar 

  11. Garsia, A. (1964). Existence of almost everywhere convergent rearrangements for Fourier series of L 2 functions. Ann. Math. 79, 623–629.

    Google Scholar 

  12. Garsia, A. (1970). Topics in Almost Everywhere Convergence. Markham, Chicago.

    Google Scholar 

  13. Giorgobiani, G. (2000). Convergent rearrangements of series of vector-valued functions. Georgian Math. J. 7(1), 43–51.

    Google Scholar 

  14. Kadets, M. I., and Kadets, V. M. (1997). Series in Banach Spaces: conditional and unconditional convergence, Birkhauser, Boston.

    Google Scholar 

  15. Kashin, B. S., and Saakyan, A. A. (1984). Orthogonal Series. Nauka, Moscow. (in Russian, English Translation: Translation of Math Monographs, 75. Providence, RI. AMS, 1989).

  16. Ledoux, M., and Talagrand, M. (1991). Probability in Banach Spaces. Springer-Verlag, Berlin.

    Google Scholar 

  17. Levental, S. (2000). A maximal inequality for real numbers with applications to exchange-able random variables, Teoriya Veroyat. i primen. 45(3), 525–532.

    Google Scholar 

  18. Levy, P. (1905). Sur les series semi-convergentes. Nouv. Ann. Math. 5(4), 506–511.

    Google Scholar 

  19. Maurey, B., and Pisier, G. (1974–1975). Remarques sur l 'expose de P. Assouad, Sem. Maurey-Schwartz, annexe 1.

  20. Nagaev, S. V. (1972). On necessary and suf cient conditions for the strong law of large numbers. Theory Probab. Appl. 17, 573–581.

    Google Scholar 

  21. Nikishin, E. M. (1967). On convergent rearrangements of functional series. Matem. Zametki 1, 129–136.

    Google Scholar 

  22. Prokhorov, Yu. V. (1950). On the strong law of large numbers. Izv. Acad. Nauk SSSR, Ser. Matem. 14, 523–536.

    Google Scholar 

  23. Steinitz, E. (1913–1915). Bedingt konvergente Reihen und konvexe Systeme. J. Reine Angew. Math. 143 (1913), 128–175;144 (1914), 1–40;146 (1915), 1–52.

  24. Szlenk, W. (1989). Permutation of terms in the Birkhoff ergodic theorem. European Conference on Iteration Theory, 444–447, World Sci. Publishing, Teaneck, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chobanyan, S., Levental, S. & Mandrekar, V. Prokhorov Blocks and Strong Law of Large Numbers Under Rearrangements. Journal of Theoretical Probability 17, 647–672 (2004). https://doi.org/10.1023/B:JOTP.0000040292.52298.fd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTP.0000040292.52298.fd

Navigation