Skip to main content
Log in

Recognition Algorithms for Orders of Small Width and Graphs of Small Dilworth Number

  • Published:
Order Aims and scope Submit manuscript

Abstract

Partially ordered sets of small width and graphs of small Dilworth number have many interesting properties and have been well studied. Here we show that recognition of such orders and graphs can be done more efficiently than by using the well-known algorithms based on bipartite matching and matrix multiplication. In particular, we show that deciding deciding if an order has width k can be done in O(kn 2) time and whether a graph has Dilworth number k can be done in O(k 2 n 2) time.

For very small k we have even better results. We show that orders of width at most 3 can be recognized in O(n) time and of width at most 4 in O(nlog n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arlazarov, V. L., Dinic, E. A., Kronrod, M. A. and Faradzev, I. A.: On economical construction of the transitive closure of a directed graph, Soviet Math.Dokl. 11 (1970), 1209–1210.

    Google Scholar 

  2. Alt, H., Blum, N., Mehlhorn, K. and Paul, M.: Computing a maximum cardinality matching in a bipartite graph in time O n 1.5 (m/log n)0.5 ), Inf.Proc.Lett. 37 (1991), 237–240.

    Google Scholar 

  3. Atkinson, M. D. and Chang, H. W.: Linear extensions of posets of bounded width, Congressus Numerantium 52 (1986), 21–35.

    Google Scholar 

  4. Benzaken, C., Hammer, P. L. and de Werra, D.: Threshold characterization of graphs with Dilworth number 2, J.Graph Theory 9 (1985), 245–267

    Google Scholar 

  5. Benzaken, C., Hammer, P. L. and de Werra, D.: Split graphs of Dilworth number two, Discrete Math. 55 (1985), 123–128.

    Google Scholar 

  6. Bondy, J. A. and Murty, U. S. R.: Graph Theory with Applications, Elsevier, New York/Macmillan, London, 1976.

    Google Scholar 

  7. Cheriyan, J.: Randomized O(M(|V|)) algorithms for problems in matching theory, SIAM J.Comput. 26 (1997), 1635–1655.

    Google Scholar 

  8. Chvátal, V. and Hammer, P. L.: Set-packing and threshold graphs, University of Waterloo Research Report CORR73–21, 1973.

  9. Chvátal, V. and Hammer, P. L.: Aggregation of inequalities in integer programming, Ann.Discrete Math. 1 (1977), 145–162.

    Google Scholar 

  10. Colbourn, C. J. and Pulleyblank, W. R.: Minimizing setups in ordered sets of fixed width, Order 1 (1985), 225–228.

    Google Scholar 

  11. Gormen, T. H., Leiserson, C. E. and Rivest, R. L.: Introduction to Algorithms, MIT Press, 1990.

  12. Coppersmith, D. and Winograd, S.: Matrix multiplication via arithmetic progressions, J.Symbolic Comput. 9 (1990), 251–280.

    Google Scholar 

  13. Dilworth, R. P.: A decomposition theorem for partially ordered sets, Ann.Math. 51 (1950), 161–166. 14. Dilworth, R. P.: Some combinatorial problems on partially ordered sets, In: Bellman and Hall (eds), Combinatorial Analysis, Proc. Sympos. Appl. Math. 10, 1960, pp. 85–90.

    Google Scholar 

  14. Földes, S. and Hammer, P. L.: The Dilworth number of a graph, Ann.Discrete Math. 2 (1978), 211–219.

    Google Scholar 

  15. Fulkerson, D. R.: Note on Dilworth's embedding theorem for partially ordered sets, Proc.Amer.Math.Soc. 7 (1956), 701–702.

    Google Scholar 

  16. Gavril, F.: Algorithms for maximum k-colorings and k-coverings of transitive graphs, Networks 17 (1987), 465–470.

    Google Scholar 

  17. Golumbic, M. C.: Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.

    Google Scholar 

  18. Gorgos, I. M.: Characterization of quasitriangulated graphs, Technical Report, University of Kishinev, 1982.

  19. Hoàng, C. T. and Mahadev, N. V. R.: A note on perfect orders, Discrete Math. 74 (1989), 77–84.

    Google Scholar 

  20. Hopcroft, J. E. and Karp, R. M.: A n 5/2 algorithm for maximum matchings in bipartite graphs, SIAM J.Comput. 2 (1973), 225–231.

    Google Scholar 

  21. Mahadev, N. V. R. and Peled, U. N.: Threshold graphs and related topics, Ann.Discrete Math. 56 (1995).

  22. McConnell, R. and Spinrad, J.: Linear time transitive orientation, In: ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 19–25.

  23. Pappadimitriou, C. H. and Yannakakis, M. Scheduling interval ordered tasks, SIAM J.Comput. 8 (1979), 405–409.

    Google Scholar 

  24. Payan, C.: Perfectness and Dilworth number, Discrete Math. 44 (1983), 229–230.

  25. Raghavan, V. and Tripathi, A.: Improved diagnosability algorithms, IEEE Trans.Comput. 2 (1991), 143–153.

    Google Scholar 

  26. Sidney, J. B. and Steiner, G.: Optimal sequencing by modular decomposition: Polynomial algorithms, Oper.Res. 34 (1986), 606–612.

    Google Scholar 

  27. Steiner, G.: Polynomial algorithms to count linear extensions in certain posets, Congressus Numerantium 75 (1990), 71–90.

    Google Scholar 

  28. Strassen, V.: Gaussian elimination is not optimal, Numer.Math. 13 (1969), 354–356.

  29. Tarjan, R.E.:Data Structures and Network Algorithms, CBMS Series 44, SIAM, Philadelphia, 1983.

    Google Scholar 

  30. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space, Inform.Process.Lett. 6 (1977), 80–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felsner, S., Raghavan, V. & Spinrad, J. Recognition Algorithms for Orders of Small Width and Graphs of Small Dilworth Number. Order 20, 351–364 (2003). https://doi.org/10.1023/B:ORDE.0000034609.99940.fb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ORDE.0000034609.99940.fb

Navigation