Skip to main content
Log in

Orbits of Positive Operators from a Differentiable Viewpoint

  • Published:
Positivity Aims and scope Submit manuscript

Abstract

Let \(\mathcal{A}\) be a unital C*-algebra and G the group of units of \(\mathcal{A}\). A geometrical study of the action of G over the set \(\mathcal{A}\) + of all positive elements of \(\mathcal{A}\) is presented. The orbits of elements with closed range by this action are provided with a structure of differentiable homogeneous space with a natural connection. The orbits are partitioned in ''components'' which also have a rich geometrical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amari, S.I. and Nagaoka, H.: Methods of information geometry, in: Translations of Mathematical Monographs. 191 Providence, RI: American Mathematical Society (AMS). Oxford: Oxford University Press.

  2. Amari, S.I., Barndorff-Nielsen, O.E., Kass, R.E., Lauritzen, S.L. and Rao, C.: Differential geometry in statistical inference, in: IMS Lecture Notes-Monograph Series, 10. Hayward, CA: Institute of Mathematical Statistics. iii, 240 p. (1987).

    Google Scholar 

  3. Andruchow, E., Corach, G. and Stojanoff, D.: Projective spaces of a C*-algebra, Integral Equations and Operator Theory 37 (2000), 143–168

    Google Scholar 

  4. Bougerol, P.: Kalman filtering with random coefficients and contractions SIAM J. Control Optimization 31 (1993), 942–959.

    Google Scholar 

  5. Campbell, L.L.: An extended Chentsov characterization of the information metric, Proc. Am. Math. Soc. 98 (1986), 135–141.

    Google Scholar 

  6. Corach, G. and Maestripieri, A.: Differential and metrical structure of positive operators, Positivity 4 (1999), 297–315.

    Google Scholar 

  7. Corach, G. and Maestripieri, A.: Differential geometry on Thompson's components of positive operators, Reports on Mathematical Physics 45 (2000), 23–37.

    Google Scholar 

  8. Corach, G. and Maestripieri, A.: Geometry of positive operators and Ulhmann's approach to the geometric phase, Rep. Math. Phys. 47 (2001), 287–299.

    Google Scholar 

  9. Corach, G., Porta, H. and Recht, L.: The geometry of spaces of selfadjoint invertible elements of a C*-algebra, Integral Equations and Operator Theory 16 (1993), 333–359.

    Google Scholar 

  10. Corach, G., Porta, H. and Recht, L.: The geometry of spaces of projections in C*-algebras. Adv. Math. 101 (1993), 279–289.

    Google Scholar 

  11. Dabrowski, L. and Grosse, H.: On quantum holonomy for mixed states, Lett. Math. Phys. 19 (1990), 205–210.

    Google Scholar 

  12. Dabrowski, L. and Jadczyk, A.: Quantum statistical holonomy, J. Phys. A, Math. Gen. 22 (1989), 3167–3170.

    Google Scholar 

  13. Dittmann, J.: On the Riemannian metric on the space of density matrices Rep. Math. Phys. 36 (1995), 309–315.

    Google Scholar 

  14. Dittmann, J.: Some properties of the Riemannian Bures metric on mixed states, J. Geom. Phys 13 (1994), 203–206.

    Google Scholar 

  15. Dittmann, J. and Rudolph, G.: On a connection governing parallel transport along 2 × 2 density matrices, J. Geom. Phys. 10 (1992), 93–106.

    Google Scholar 

  16. Dittmann, J. and Rudolph, G.: A class of connections governing parallel transport along density matrices, J. Math. Phys. 33 (1992), 4148–4154.

    Google Scholar 

  17. Douglas, R.G.: On majorization, factorization and range inclusion of operators in Hilbert space, Proc. Am. Math. Soc. 17 (1966), 413–416.

    Google Scholar 

  18. Harte, R. and Mbekhta, M.: On generalized inverses in C*-algebras, Studia Math. 103 (1992), 71–77.

    Google Scholar 

  19. Hiai, F. and Petz, D.: Quantum mechanics in AF C*-systems, Rev. Math. Phys 8 (1996), 819–859.

    Google Scholar 

  20. Hiai, F., Petz, D. and Toth, G.: Curvature in the geometry of canonical correlation, Stud. Sci. Math. Hung. 32 (1996), 235–249.

    Google Scholar 

  21. Kass, R.E.: The geometry of asymptotic inference. Stat. Sci. 4 (1989), 188–234.

    Google Scholar 

  22. Kato, Y.: An elementary proof of Sz.-Nagy theorem, Math. Japon. 20 (1975), 257–258.

    Google Scholar 

  23. Labrousee, J.Ph. and Mbekhta, M.: Les operateurs points de continuité pour la conorme et l'inverse de Moore-Penrose, Houston J. Math. 18 (1992), 7–23.

    Google Scholar 

  24. Lang, S.: Diffeentiable Manifolds, Addison-Wesley, Reading, MA, 1972.

    Google Scholar 

  25. Liverani, C. and Wojtkowski, M.P.: Generalization of the Hilbert metric to the space of positive definite matrices Pac. J. Math 166 (1994), 339–555.

    Google Scholar 

  26. Murray, M.K. and Rice, J.W.: Differential geometry and statistics, in: Monographs on Statistics and Applied Probability, 48. Chapman & Hall, London, 1993.

    Google Scholar 

  27. Sz.-Nagy, B.: Spectraldarstellung Linearer Transformationen des Hilbertschen Raumes, Ergebn. Math. Grenzgebiete, 39, Springer, Berlin, (1942).

    Google Scholar 

  28. Nussbaum, R.D.: Hilbert's projective metric and iterated nonlinear maps, Mem. Am. Math. Soc. 391 (1988).

  29. Ohara, A., Suda, N. and Amari, S.I.: Dualistic differential geometry of positive definite matrices and its applications to related problems, Linear Algebra Appl. 247 (1996), 31–53.

    Google Scholar 

  30. Ohara, A. and Amari, S.I.: Differential geometric structures of stable state feedback systems with dual connections, Kybernetika 30 (1994), 369–386.

    Google Scholar 

  31. Petz, D.: Geometry of canonical correlation on the state space of a quantum system, J. Math. Phys. 35 (1994), 780–795.

    Google Scholar 

  32. Petz, D.: Quasi-entropies for finite quantum systems, Rep. Math. Phys. 23, (1986), 57–65.

    Google Scholar 

  33. Thompson, A.C.: On certain contraction mappings in a partially ordered vector space, Proc. Am. Math. Soc. 14 (1963), 438–443.

    Google Scholar 

  34. Uhlmann, A.: Parallel transport and holonomy along density operators. Differential geometric methods in theoretical physics, Proc. 15th Int. Conf., DGM, Clausthal/FRG 1986 (1987) pp. 246–254.

  35. Uhlmann, A.: Parallel lifts and holonomy along density operators: Computable examples using O(3)-orbits, in: Gruber, B. (ed.), Symmetries in Science VI: From the rotation group to quantum algebras. Proceedings of a symposium held in Bregenz, Austria, 2–7 August 1992. New York, NY: Plenum Press, 1993, pp. 741–748.

    Google Scholar 

  36. Uhlmann, A.: Density operators as an arena for differential geometry, Rep. Math. Phys. 33 (1993), 253–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corach, G., Maestripieri, A. & Stojanoff, D. Orbits of Positive Operators from a Differentiable Viewpoint. Positivity 8, 31–48 (2004). https://doi.org/10.1023/B:POST.0000023202.40428.a8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:POST.0000023202.40428.a8

Navigation