TOPICAL REVIEW

On the geometric approach to the motion of inertial mechanical systems

and

Published 2 August 2002 Published under licence by IOP Publishing Ltd
, , Citation Adrian Constantin and Boris Kolev 2002 J. Phys. A: Math. Gen. 35 R51 DOI 10.1088/0305-4470/35/32/201

0305-4470/35/32/R51

Abstract

According to the principle of least action, the spatially periodic motions of one-dimensional mechanical systems with no external forces are described in the Lagrangian formalism by geodesics on a manifold-configuration space, the group Script D of smooth orientation-preserving diffeomorphisms of the circle. The periodic inviscid Burgers equation is the geodesic equation on Script D with the L2 right-invariant metric. However, the exponential map for this right-invariant metric is not a C1 local diffeomorphism and the geometric structure is therefore deficient. On the other hand, the geodesic equation on Script D for the H1 right-invariant metric is also a re-expression of a model in mathematical physics. We show that in this case the exponential map is a C1 local diffeomorphism and that if two diffeomorphisms are sufficiently close on Script D, they can be joined by a unique length-minimizing geodesic—a state of the system is transformed to another nearby state by going through a uniquely determined flow that minimizes the energy. We also analyse for both metrics the breakdown of the geodesic flow.

Export citation and abstract BibTeX RIS

10.1088/0305-4470/35/32/201