Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Functional equations involving means and their Gauss composition
HTML articles powered by AMS MathViewer

by Zoltán Daróczy, Gyula Maksa and Zsolt Páles PDF
Proc. Amer. Math. Soc. 134 (2006), 521-530 Request permission

Abstract:

In this paper the equivalence of the two functional equations \[ f(M_1(x,y))+f(M_2(x,y))=f(x)+f(y) \qquad (x,y\in I) \] and \[ 2f(M_1\otimes M_2(x,y))=f(x)+f(y) \qquad (x,y\in I) \] is studied, where $M_1$ and $M_2$ are two variable strict means on an open real interval $I$, and $M_1\otimes M_2$ denotes their Gauss composition. The equivalence of these equations is shown (without assuming further regularity assumptions on the unknown function $f:I\to \mathbb {R}$) for the cases when $M_1$ and $M_2$ are the arithmetic and geometric means, respectively, and also in the case when $M_1$, $M_2$, and $M_1\otimes M_2$ are quasi-arithmetic means. If $M_1$ and $M_2$ are weighted arithmetic means, then, depending on the algebraic character of the weight, the above equations can be equivalent and also non-equivalent to each other.
References
  • Gert Almkvist and Bruce Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, $\pi$, and the Ladies diary, Amer. Math. Monthly 95 (1988), no. 7, 585–608. MR 966232, DOI 10.2307/2323302
  • Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
  • B. C. Carlson, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly 78 (1971), 496–505. MR 283246, DOI 10.2307/2317754
  • Zoltán Daróczy, Notwendige und hinreichende Bedingungen für die Existenz von nichtkonstanten Lösungen linearer Funktionalgleichungen, Acta Sci. Math. (Szeged) 22 (1961), 31–41 (German). MR 130487
  • Z. Daróczy, 10. Problem (in Report of Meeting: The 37th International Symposium on Functional Equations, 1991, Huntington, West Virginia, USA), Aequationes Math. 60 (2000), no. 1–2, 190.
  • Zoltán Daróczy and Zsolt Páles, Gauss-composition of means and the solution of the Matkowski-Sutô problem, Publ. Math. Debrecen 61 (2002), no. 1-2, 157–218. MR 1914652
  • Bruce Ebanks, Solution of some functional equations involving symmetric means, Publ. Math. Debrecen 61 (2002), no. 3-4, 579–588. MR 1943716
  • C. F. Gauss, Bestimmung der Anziehung eines elliptischen Ringes, Akademische Verlagsgesellschaft M. B. H., Leipzig, 1927, Nachlass zur Theorie des arithmetisch-geometrischen Mittels und der Modulfunktion.
  • G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
  • Marek Kuczma, An introduction to the theory of functional equations and inequalities, Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], vol. 489, Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985. Cauchy’s equation and Jensen’s inequality; With a Polish summary. MR 788497
  • Károly Lajkó, On a functional equation of Alsina and García-Roig, Publ. Math. Debrecen 52 (1998), no. 3-4, 507–515. Dedicated to Professors Zoltán Daróczy and Imre Kátai. MR 1630836
  • Gyula Maksa, On the functional equation $f(x+y)+g(xy)=h(x)+h(y)$, Publ. Math. Debrecen 24 (1977), no. 1-2, 25–29. MR 447867
  • Janusz Matkowski, Iterations of mean-type mappings and invariant means, Ann. Math. Sil. 13 (1999), 211–226. European Conference on Iteration Theory (Muszyna-Złockie, 1998). MR 1735204
  • A. Wayne Roberts and Dale E. Varberg, Convex functions, Pure and Applied Mathematics, Vol. 57, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1973. MR 0442824
  • Isaac J. Schoenberg, Mathematical time exposures, Mathematical Association of America, Washington, DC, 1982. MR 711022
  • László Székelyhidi, Convolution type functional equations on topological abelian groups, World Scientific Publishing Co., Inc., Teaneck, NJ, 1991. MR 1113488, DOI 10.1142/1406
Similar Articles
Additional Information
  • Zoltán Daróczy
  • Affiliation: Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary
  • Email: daroczy@math.klte.hu
  • Gyula Maksa
  • Affiliation: Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary
  • Email: maksa@math.klte.hu
  • Zsolt Páles
  • Affiliation: Institute of Mathematics, University of Debrecen, H-4010 Debrecen, Pf. 12, Hungary
  • Email: pales@math.klte.hu
  • Received by editor(s): April 29, 2003
  • Received by editor(s) in revised form: September 29, 2004
  • Published electronically: July 18, 2005
  • Additional Notes: This research was supported by the Hungarian Scientific Research Fund (OTKA) Grants T-043080 and T-038072.
  • Communicated by: Carmen C. Chicone
  • © Copyright 2005 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 134 (2006), 521-530
  • MSC (2000): Primary 39B22, 39B12; Secondary 26A51, 26B25
  • DOI: https://doi.org/10.1090/S0002-9939-05-08009-3
  • MathSciNet review: 2176021