Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Local-global principle for transvection groups
HTML articles powered by AMS MathViewer

by A. Bak, Rabeya Basu and Ravi A. Rao PDF
Proc. Amer. Math. Soc. 138 (2010), 1191-1204

Abstract:

In this article we extend the validity of Suslinā€™s Local-Global Principle for the elementary transvection subgroup of the general linear group GL$_n(R)$, the symplectic group Sp$_{2n}(R)$, and the orthogonal group O$_{2n}(R)$, where $n > 2$, to a Local-Global Principle for the elementary transvection subgroup of the automorphism group Aut$(P)$ of either a projective module $P$ of global rank $> 0$ and constant local rank $> 2$, or of a nonsingular symplectic or orthogonal module $P$ of global hyperbolic rank $> 0$ and constant local hyperbolic rank $> 2$. In Suslinā€™s results, the local and global ranks are the same, because he is concerned only with free modules. Our assumption that the global (hyperbolic) rank $> 0$ is used to define the elementary transvection subgroups. We show further that the elementary transvection subgroup ET$(P)$ is normal in Aut$(P)$, that ET$(P) =$ T$(P)$, where the latter denotes the full transvection subgroup of Aut$(P)$, and that the unstable K$_1$-group K$_1($Aut$(P)) =$ Aut$(P)/$ET$(P) =$ Aut$(P)/$T$(P)$ is nilpotent by abelian, provided $R$ has finite stable dimension. The last result extends previous ones of Bak and Hazrat for GL$_n(R)$, Sp$_{2n}(R)$, and O$_{2n}(R)$.

An important application to the results in the current paper can be found in a preprint of Basu and Rao in which the last two named authors studied the decrease in the injective stabilization of classical modules over a nonsingular affine algebra over perfect C$_1$-fields. We refer the reader to that article for more details.

References
  • Anthony Bak, Nonabelian $K$-theory: the nilpotent class of $K_1$ and general stability, $K$-Theory 4 (1991), no.Ā 4, 363ā€“397. MR 1115826, DOI 10.1007/BF00533991
  • H. Bass; Algebraic $K$-theory, Math. Lecture Note Series, W.A. Benjamin, Inc., 1968.
  • Hyman Bass, Unitary algebraic $K$-theory, Algebraic $K$-theory, III: Hermitian $K$-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 343, Springer, Berlin, 1973, pp.Ā 57ā€“265. MR 0371994
  • R. Basu, R.A. Rao; Injective Stability for K$_1$ of Classical Modules, preprint.
  • Rabeya Basu, Ravi. A. Rao, and Reema Khanna, On Quillenā€™s local global principle, Commutative algebra and algebraic geometry, Contemp. Math., vol. 390, Amer. Math. Soc., Providence, RI, 2005, pp.Ā 17ā€“30. MR 2187322, DOI 10.1090/conm/390/07291
  • S. M. Bhatwadekar and A. Roy, Some theorems about projective modules over polynomial rings, J. Algebra 86 (1984), no.Ā 1, 150ā€“158. MR 727374, DOI 10.1016/0021-8693(84)90061-9
  • Alexander J. Hahn and O. Timothy Oā€™Meara, The classical groups and $K$-theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 291, Springer-Verlag, Berlin, 1989. With a foreword by J. DieudonnĆ©. MR 1007302, DOI 10.1007/978-3-662-13152-7
  • Roozbeh Hazrat and Nikolai Vavilov, $K_1$ of Chevalley groups are nilpotent, J. Pure Appl. Algebra 179 (2003), no.Ā 1-2, 99ā€“116. MR 1958377, DOI 10.1016/S0022-4049(02)00292-X
  • V. I. KopeÄ­ko, Stabilization of symplectic groups over a ring of polynomials, Mat. Sb. (N.S.) 106(148) (1978), no.Ā 1, 94ā€“107, 144 (Russian). MR 497932
  • T. Y. Lam, Serreā€™s conjecture, Lecture Notes in Mathematics, Vol. 635, Springer-Verlag, Berlin-New York, 1978. MR 0485842, DOI 10.1007/BFb0068340
  • N. Mohan Kumar, M. Pavaman Murthy, and A. Roy, A cancellation theorem for projective modules over finitely generated rings, Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, Tokyo, 1988, pp.Ā 281ā€“287. MR 977765
  • Daniel Quillen, Projective modules over polynomial rings, Invent. Math. 36 (1976), 167ā€“171. MR 427303, DOI 10.1007/BF01390008
  • A. A. Suslin, The structure of the special linear group over rings of polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no.Ā 2, 235ā€“252, 477 (Russian). MR 0472792
  • A. A. Suslin and V. I. KopeÄ­ko, Quadratic modules and the orthogonal group over polynomial rings, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 71 (1977), 216ā€“250, 287 (Russian). Modules and representations. MR 0469914
  • Giovanni Taddei, NormalitĆ© des groupes Ć©lĆ©mentaires dans les groupes de Chevalley sur un anneau, Applications of algebraic $K$-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp.Ā 693ā€“710 (French). MR 862660, DOI 10.1090/conm/055.2/1862660
  • L. N. VaserÅ”teÄ­n, The stable range of rings and the dimension of topological spaces, Funkcional. Anal. i Priložen. 5 (1971), no.Ā 2, 17ā€“27 (Russian). MR 0284476
Similar Articles
Additional Information
  • A. Bak
  • Affiliation: Department of Mathematics, University of Bielefeld, Bielefeld, Germany
  • Email: bak@mathematik.uni-bielefeld.de
  • Rabeya Basu
  • Affiliation: Indian Institute of Science Education and Research, Kolkata, India
  • Email: rabeya.basu@gmail.com, rbasu@iiserkol.ac.in
  • Ravi A. Rao
  • Affiliation: Tata Institute of Fundamental Research, Mumbai, India
  • Email: ravi@math.tifr.res.in
  • Received by editor(s): July 2, 2009
  • Published electronically: November 20, 2009
  • Communicated by: Martin Lorenz
  • © Copyright 2009 By the authors
  • Journal: Proc. Amer. Math. Soc. 138 (2010), 1191-1204
  • MSC (2000): Primary 13C10, 15A63, 19B10, 19B14
  • DOI: https://doi.org/10.1090/S0002-9939-09-10198-3
  • MathSciNet review: 2578513