Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On a theorem of Picard
HTML articles powered by AMS MathViewer

by F. Gesztesy and W. Sticka PDF
Proc. Amer. Math. Soc. 126 (1998), 1089-1099 Request permission

Abstract:

We extend Picard’s theorem on the existence of elliptic solutions of the second kind of linear homogeneous ${n}^{\mathrm {th}}$-order scalar ordinary differential equations with coefficients being elliptic functions (associated with a common period lattice) to linear homogeneous first-order $n\times n$ systems. In particular, the qualitative Floquet-type structure of fundamental systems of solutions in terms of elliptic and exponential functions, polynomials, and Weierstrass zeta functions of the independent variable is determined. Connections with completely integrable systems are mentioned.
References
  • Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
  • N. I. Akhiezer, Elements of the theory of elliptic functions, Translations of Mathematical Monographs, vol. 79, American Mathematical Society, Providence, RI, 1990. Translated from the second Russian edition by H. H. McFaden. MR 1054205, DOI 10.1090/mmono/079
  • E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994.
  • H. Burkhardt, Elliptische Funktionen, 2nd ed., Verlag von Veit, Leipzig, 1906.
  • E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Krieger, Malabar, 1985.
  • L. A. Dickey, Soliton equations and Hamiltonian systems, Advanced Series in Mathematical Physics, vol. 12, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1147643, DOI 10.1142/1109
  • M. V. Fedoryuk, Lamé wave functions in Jacobi form. I, Differentsial′nye Uravneniya 23 (1987), no. 10, 1715–1724, 1835 (Russian). MR 928854
  • G. Floquet, Sur les équations différentielles linéaires à coefficients doublement périodiques, C. R. Acad. Sci. Paris, 98, 38–39, 82–85 (1884).
  • G. Floquet, Sur les équations différentielles linéaires à coefficients doublement périodiques, Ann. Sci. Ecole Norm. Sup., 1, 181–238 (1884).
  • G. Floquet, Addition a un mémorie sur les équations différentielles linéaires, Ann. Sci. Ecole Norm. Sup., 1, 405–408 (1884).
  • F. R. Gantmacher, Matrizenrechnung. II. Spezielle Fragen und Anwendungen, Hochschulbücher für Mathematik, Band 37, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959 (German). MR 0107647
  • F. Gesztesy and R. Weikard, Lamé potentials and the stationary (m)KdV hierarchy, Math. Nachr., 176, 73–91 (1995).
  • F. Gesztesy and R. Weikard, On Picard potentials, Differential Integral Equations 8 (1995), no. 6, 1453–1476. MR 1329850
  • F. Gesztesy and R. Weikard, Treibich-Verdier potentials and the stationary (m)KdV hierarchy, Math. Z. 219 (1995), no. 3, 451–476. MR 1339715, DOI 10.1007/BF02572375
  • Fritz Gesztesy and Rudi Weikard, Picard potentials and Hill’s equation on a torus, Acta Math. 176 (1996), no. 1, 73–107. MR 1395670, DOI 10.1007/BF02547336
  • F. Gesztesy and R. Weikard, Toward a characterization of elliptic solutions of hierarchies of soliton equations, Contemp. Math., to appear.
  • F. Gesztesy and R. Weikard, A characterization of all elliptic solutions of the AKNS hierarchy, Acta Math., to appear.
  • Jeremy Gray, Linear differential equations and group theory from Riemann to Poincaré, Birkhäuser Boston, Inc., Boston, MA, 1986. MR 891402, DOI 10.1007/978-1-4899-6672-8
  • G.-H. Halphen, Traité des Fonctions Elliptiques, tome 2, Gauthier–Villars, Paris, 1888.
  • Philip Hartman, Ordinary differential equations, 2nd ed., Birkhäuser, Boston, Mass., 1982. MR 658490
  • C. Hermite, Oeuvres, tome 3, Gauthier–Villars, Paris, 1912.
  • Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
  • M. Krause, Theorie der doppeltperiodischen Funktionen einer veränderlichen Grösse, Vol. 2, Teubner, Leipzig, 1897.
  • G. Mittag-Leffler, Sur les équations différentielles linéaires à coefficients doublement périodiques, C. R. Acad. Sci. Paris, 90, 299–300 (1880).
  • S. Novikov, S. V. Manakov, L. P. Pitaevskiĭ, and V. E. Zakharov, Theory of solitons, Contemporary Soviet Mathematics, Consultants Bureau [Plenum], New York, 1984. The inverse scattering method; Translated from the Russian. MR 779467
  • E. Picard, Sur une généralisation des fonctions périodiques et sur certaines équations différentielles linéaires, C. R. Acad. Sci. Paris, 89, 140–144 (1879).
  • E. Picard, Sur une classe d’équations différentielles linéaires, C. R. Acad. Sci. Paris, 90, 128–131 (1880).
  • E. Picard, Sur les équations différentielles linéaires à coefficients doublement périodiques, J. Reine Angew. Math., 90, 281–302 (1881).
  • E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
  • V. A. Yakubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients. 1, 2, Halsted Press [John Wiley & Sons], New York-Toronto; Israel Program for Scientific Translations, Jerusalem-London, 1975. Translated from Russian by D. Louvish. MR 0364740
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 33E05, 34C25, 58F07
  • Retrieve articles in all journals with MSC (1991): 33E05, 34C25, 58F07
Additional Information
  • F. Gesztesy
  • Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
  • MR Author ID: 72880
  • Email: fritz@math.missouri.edu
  • W. Sticka
  • Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
  • Received by editor(s): September 23, 1996
  • Additional Notes: The research was based upon work supported by the National Science Foundation under Grant No. DMS-9623121.
  • Communicated by: Hal L. Smith
  • © Copyright 1998 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 126 (1998), 1089-1099
  • MSC (1991): Primary 33E05, 34C25; Secondary 58F07
  • DOI: https://doi.org/10.1090/S0002-9939-98-04668-1
  • MathSciNet review: 1476130