Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Generalized interpolation in $H^\infty$ with a complexity constraint
HTML articles powered by AMS MathViewer

by Christopher I. Byrnes, Tryphon T. Georgiou, Anders Lindquist and Alexander Megretski PDF
Trans. Amer. Math. Soc. 358 (2006), 965-987 Request permission

Abstract:

In a seminal paper, Sarason generalized some classical interpolation problems for $H^\infty$ functions on the unit disc to problems concerning lifting onto $H^2$ of an operator $T$ that is defined on $\mathcal {K} =H^2\ominus \phi H^2$ ($\phi$ is an inner function) and commutes with the (compressed) shift $S$. In particular, he showed that interpolants (i.e., $f\in H^\infty$ such that $f(S)=T$) having norm equal to $\|T\|$ exist, and that in certain cases such an $f$ is unique and can be expressed as a fraction $f=b/a$ with $a,b\in \mathcal {K}$. In this paper, we study interpolants that are such fractions of $\mathcal {K}$ functions and are bounded in norm by $1$ (assuming that $\|T\|<1$, in which case they always exist). We parameterize the collection of all such pairs $(a,b)\in \mathcal {K}\times \mathcal {K}$ and show that each interpolant of this type can be determined as the unique minimum of a convex functional. Our motivation stems from the relevance of classical interpolation to circuit theory, systems theory, and signal processing, where $\phi$ is typically a finite Blaschke product, and where the quotient representation is a physically meaningful complexity constraint.
References
  • V. M. Adamjan, D. Z. Arov, and M. G. KreÄ­n, Analytic properties of the Schmidt pairs of a Hankel operator and the generalized Schur-Takagi problem, Mat. Sb. (N.S.) 86(128) (1971), 34–75 (Russian). MR 0298453
  • D. Z. Arov and M. A. Nudelman, Passive linear stationary dynamical scattering systems with continuous time, Integral Equations Operator Theory 24 (1996), no. 1, 1–45. MR 1366539, DOI 10.1007/BF01195483
  • Joseph A. Ball and J. William Helton, A Beurling-Lax theorem for the Lie group $\textrm {U}(m,\,n)$ which contains most classical interpolation theory, J. Operator Theory 9 (1983), no. 1, 107–142. MR 695942
  • Christopher I. Byrnes, Anders Lindquist, Sergei V. Gusev, and Alexei S. Matveev, A complete parameterization of all positive rational extensions of a covariance sequence, IEEE Trans. Automat. Control 40 (1995), no. 11, 1841–1857. MR 1358002, DOI 10.1109/9.471206
  • Christopher I. Byrnes, Henry J. Landau, and Anders Lindquist, On the well-posedness of the rational covariance extension problem, Current and future directions in applied mathematics (Notre Dame, IN, 1996) BirkhĂ€user Boston, Boston, MA, 1997, pp. 83–108. MR 1445098
  • Christopher I. Byrnes, Sergei V. Gusev, and Anders Lindquist, A convex optimization approach to the rational covariance extension problem, SIAM J. Control Optim. 37 (1999), no. 1, 211–229. MR 1642019, DOI 10.1137/S0363012997321553
  • Christopher J. Byrnes, Tryphon T. Georgiou, and Anders Lindquist, A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint, IEEE Trans. Automat. Control 46 (2001), no. 6, 822–839. MR 1836499, DOI 10.1109/9.928584
  • Christopher I. Byrnes and Anders Lindquist, On the duality between filtering and Nevanlinna-Pick interpolation, SIAM J. Control Optim. 39 (2000), no. 3, 757–775. MR 1786328, DOI 10.1137/S0363012999351115
  • Christopher I. Byrnes, Sergei V. Gusev, and Anders Lindquist, From finite covariance windows to modeling filters: a convex optimization approach, SIAM Rev. 43 (2001), no. 4, 645–675. MR 1882686, DOI 10.1137/S0036144501392194
  • C. I. Byrnes and A. Lindquist, Interior point solutions of variational problems and global inverse function theorems, Report TRITA/MAT-01-OS13, 2001, Royal Institute of Technology, Stockholm, Sweden, 2001.
  • Christopher I. Byrnes and Anders Lindquist, A convex optimization approach to generalized moment problems, Control and modeling of complex systems (Tokyo, 2001) Trends Math., BirkhĂ€user Boston, Boston, MA, 2003, pp. 3–21. MR 1960691
  • C. CarathĂ©odory and L. Fejer, Über den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizenten und ĂŒber den Picard-Landau’schen Satz, Rend. Circ. Mat. Palermo 32 (1911), 218–239.
  • R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 1, 37–76 (English, with French summary). MR 270196, DOI 10.5802/aif.338
  • Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • Harry Dym and Israel Gohberg, A maximum entropy principle for contractive interpolants, J. Funct. Anal. 65 (1986), no. 1, 83–125. MR 819176, DOI 10.1016/0022-1236(86)90018-2
  • John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
  • T. T. Georgiou, Partial Realization of Covariance Sequences, Ph.D. thesis, CMST, University of Florida, Gainesville 1983.
  • T. T. Georgiou, Realization of power spectra from partial covariance sequences, IEEE Trans. Acoustics, Speech and Signal processing 35 (1987), 438–449.
  • Tryphon T. Georgiou, A topological approach to Nevanlinna-Pick interpolation, SIAM J. Math. Anal. 18 (1987), no. 5, 1248–1260. MR 902330, DOI 10.1137/0518091
  • T. T. Georgiou, The Interpolation Problem with a Degree Constraint, IEEE Trans. Automat. Control 44 (1999), 631–635.
  • T. T. Georgiou and A. Lindquist, Kullback-Leibler approximation of spectral density functions, IEEE Trans. Information Theory 49 (2003), 2910–2917.
  • Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR 0094840
  • Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
  • Solomon Kullback, Information theory and statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1959. MR 0103557
  • D. Mustafa and K. Glover, Minimum entropy $H_\infty$ control, Lecture Notes in Control and Information Sciences, vol. 146, Springer-Verlag, Berlin, 1990. MR 1079546, DOI 10.1007/BFb0008861
  • R. Nevanlinna, Über beschrĂ€nkte Funktionen die in gegebenen Punkten vorgeschriebene Werte annehmen, Ann. Acad, Sci. Fenn. Ser A 13(1), 1919.
  • N. K. Nikolâ€ČskiÄ­, Treatise on the shift operator, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 273, Springer-Verlag, Berlin, 1986. Spectral function theory; With an appendix by S. V. Hruơčev [S. V. KhrushchĂ«v] and V. V. Peller; Translated from the Russian by Jaak Peetre. MR 827223, DOI 10.1007/978-3-642-70151-1
  • G. Pick, Über die BeschrĂ€nkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden, Math. Ann. 77 (1916), 7–23.
  • Donald Sarason, Generalized interpolation in $H^{\infty }$, Trans. Amer. Math. Soc. 127 (1967), 179–203. MR 208383, DOI 10.1090/S0002-9947-1967-0208383-8
  • I. Schur, On power series which are bounded in the interior of the unit circle I and II, Journal fur die reine und angewandte Mathematik 148 (1918), 122–145.
  • BĂ©la Sz.-Nagy and Ciprian FoiaƟ, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; AkadĂ©miai KiadĂł, Budapest, 1970. Translated from the French and revised. MR 0275190
  • O. Toeplitz, Über die Fouriersche Entwicklung positiver Funktionen, Rendiconti del Circolo Matematico di Palermo 32 (1911), 191–192.
  • Eberhard Zeidler, Nonlinear functional analysis and its applications. III, Springer-Verlag, New York, 1985. Variational methods and optimization; Translated from the German by Leo F. Boron. MR 768749, DOI 10.1007/978-1-4612-5020-3
Similar Articles
Additional Information
  • Christopher I. Byrnes
  • Affiliation: Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130
  • Tryphon T. Georgiou
  • Affiliation: Department of Electrical Engineering, University of Minnesota, Minneapolis, Minnesota 55455
  • Anders Lindquist
  • Affiliation: Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm, Sweden
  • Alexander Megretski
  • Affiliation: Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
  • Received by editor(s): October 27, 2003
  • Received by editor(s) in revised form: January 21, 2004
  • Published electronically: December 9, 2004
  • Additional Notes: This research was supported in part by Institut Mittag-Leffler and by grants from AFOSR, NSF, VR, the Göran Gustafsson Foundation, and Southwestern Bell.
  • © Copyright 2004 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 358 (2006), 965-987
  • MSC (2000): Primary 47A57, 30E05; Secondary 46N10, 47N10, 93B15
  • DOI: https://doi.org/10.1090/S0002-9947-04-03616-5
  • MathSciNet review: 2187641