Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Small deformations of polygons and polyhedra
HTML articles powered by AMS MathViewer

by Jean-Marc Schlenker PDF
Trans. Amer. Math. Soc. 359 (2007), 2155-2189 Request permission

Abstract:

We describe the first-order variations of the angles of Euclidean, spherical or hyperbolic polygons under infinitesimal deformations such that the lengths of the edges do not change. Using this description, we introduce a vector-valued quadratic invariant $b$ on the space of those isometric deformations which, for convex polygons, has a remarkable positivity property. We give two geometric applications. The first is an isoperimetric statement for hyperbolic polygons: Among the convex hyperbolic polygons with given edge lengths, there is a unique polygon with vertices on a circle, a horocycle, or on one connected component of the space of points at constant distance from a geodesic, and it has maximal area. The second application is a rigidity result for equivariant polyhedral surfaces in the Minkowski space. Résumé. On décrit les déformations infinitésimales des angles d’un polygone euclidien, sphérique ou hyperbolique sous les déformations infinitésimales qui préservent les longueurs des arêtes. On en déduit la définition d’un invariant quadratique à valeurs vectorielles $b$ sur l’espace de ces déformations isométriques qui, pour les polygones convexes, a une propriété remarquable de positivité. On donne deux applications géométriques. La première est un énoncé isoperimétrique pour les polygones hyperboliques : Parmi les polygones hyperboliques convexes dont les longueurs des arêtes sont données, il existe un unique élément dont les sommets sont sur un cercle, un horocycle, ou dans une composante connexe de l’ensemble des points à distance constante d’une géodésique, et son aire est maximale. La seconde application est un résultat de rigidité pour les surfaces polyèdrales équivariantes dans l’espace de Minkowski.
References
  • A. D. Alexandrow, Konvexe polyeder, Akademie-Verlag, Berlin, 1958 (German). Mathematiksche Lehrbücher und Monographien; Herausgegeben von der Deutschen Akademie der Wissenschaften zu Berlin, Forschungsinstitut für Mathematik; II. Abteilung: Mathematische Monographien, Bd. VIII. MR 0092989
  • Victor Alexandrov, Flexible polyhedra in Minkowski 3-space, Manuscripta Math. 111 (2003), no. 3, 341–356. MR 1993499, DOI 10.1007/s00229-003-0375-3
  • Augustin Louis Cauchy. Sur les polygones et polyèdres, second mémoire. Journal de l’Ecole Polytechnique, 19:87–98, 1813.
  • H. S. M. Coxeter, A geometrical background for de Sitter’s world, Amer. Math. Monthly 50 (1943), 217–228. MR 7991, DOI 10.2307/2303924
  • H. S. M. Coxeter, Non-Euclidean geometry, Mathematical Expositions, No. 2, University of Toronto Press, Toronto, Ont., 1957. 3rd ed. MR 0087965
  • H. S. M. Coxeter, The real projective plane, 3rd ed., Springer-Verlag, New York, 1993. With an appendix by George Beck; With 1 Macintosh floppy disk (3.5 inch; DD). MR 1198271
  • M. Dehn, Über die Starrheit konvexer Polyeder, Math. Ann. 77 (1916), no. 4, 466–473 (German). MR 1511873, DOI 10.1007/BF01456962
  • Euclid, Euclid’s Elements, Green Lion Press, Santa Fe, NM, 2002. All thirteen books complete in one volume; The Thomas L. Heath translation; Edited by Dana Densmore. MR 1932864
  • P. Filliman, Rigidity and the Alexandrov-Fenchel inequality, Monatsh. Math. 113 (1992), no. 1, 1–22. MR 1149057, DOI 10.1007/BF01299302
  • Herman Gluck, Almost all simply connected closed surfaces are rigid, Geometric topology (Proc. Conf., Park City, Utah, 1974) Lecture Notes in Math., Vol. 438, Springer, Berlin, 1975, pp. 225–239. MR 0400239
  • I. Iskhakov. On hyperbolic surface tessellations and equivariant spacelike convex polyhedral surfaces in Minkowski space. Ph.D. thesis, Ohio State University, 2000.
  • Edgar Kann, Infinitesimal rigidity of almost-convex oriented polyhedra of arbitrary Euler characteristic, Pacific J. Math. 144 (1990), no. 1, 71–103. MR 1056667
  • Michael Kapovich and John Millson, On the moduli space of polygons in the Euclidean plane, J. Differential Geom. 42 (1995), no. 2, 430–464. MR 1366551
  • Michael Kapovich and John J. Millson, On the moduli space of a spherical polygonal linkage, Canad. Math. Bull. 42 (1999), no. 3, 307–320. MR 1703691, DOI 10.4153/CMB-1999-037-x
  • A.-M. Legendre. Eléments de géométrie. Paris, 1793 (an II). Première édition, note XII, pp.321-334.
  • François Labourie and Jean-Marc Schlenker, Surfaces convexes fuchsiennes dans les espaces lorentziens à courbure constante, Math. Ann. 316 (2000), no. 3, 465–483 (French, with English summary). MR 1752780, DOI 10.1007/s002080050339
  • A. D. Milka, An analog of Blaschke’s formula for polyhedra, Ukrain. Geometr. Sb. Vyp. 1 (1965), 62–64 (Russian). MR 0215184
  • Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
  • A. V. Pogorelov, A new proof of rigidity of convex polyhedra, Uspehi Mat. Nauk (N.S.) 11 (1956), no. 5(71), 207–208 (Russian). MR 0083766
  • Craig D. Hodgson and Igor Rivin, A characterization of compact convex polyhedra in hyperbolic $3$-space, Invent. Math. 111 (1993), no. 1, 77–111. MR 1193599, DOI 10.1007/BF01231281
  • Igor Rivin. Thesis. Ph.D. thesis, Princeton University, 1986.
  • I. Kh. Sabitov, Around the proof of the Legendre-Cauchy lemma on convex polygons, Sibirsk. Mat. Zh. 45 (2004), no. 4, 892–919 (Russian, with Russian summary); English transl., Siberian Math. J. 45 (2004), no. 4, 740–762. MR 2091654, DOI 10.1023/B:SIMJ.0000035837.80962.0a
  • Jean-Marc Schlenker, Métriques sur les polyèdres hyperboliques convexes, J. Differential Geom. 48 (1998), no. 2, 323–405 (French, with English and French summaries). MR 1630178
  • Jean-Marc Schlenker, Convex polyhedra in Lorentzian space-forms, Asian J. Math. 5 (2001), no. 2, 327–363 (English, with English and French summaries). MR 1868937, DOI 10.4310/AJM.2001.v5.n2.a3
  • Jean-Marc Schlenker, Des immersions isométriques de surfaces aux variétés hyperboliques à bord convexe, Séminaire de Théorie Spectrale et Géométrie. Vol. 21. Année 2002–2003, Sémin. Théor. Spectr. Géom., vol. 21, Univ. Grenoble I, Saint-Martin-d’Hères, 2003, pp. 165–216 (French, with English and French summaries). MR 2052831
  • Jean-Marc Schlenker. Small deformations of polygons. math.DG/0410058, v2, 2004.
  • A. Siegel, A Dido problem as modernized by Fejes Tóth, Discrete Comput. Geom. 27 (2002), no. 2, 227–238. MR 1880939, DOI 10.1007/s00454-001-0063-6
  • J. Steiner. Sur le maximum et le minimum des figures dans le plan, sur la sphère, et dans l’espace en général. J. Reine Angew. Math., 24:93–152, 190–250, 1842.
  • Yu. A. Volkov, On deformations of a convex polyhedral angle, Uspehi Mat. Nauk (N.S.) 11 (1956), no. 5(71), 209–210 (Russian). MR 0083765
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C45, 53C50, 51M16
  • Retrieve articles in all journals with MSC (2000): 53C45, 53C50, 51M16
Additional Information
  • Jean-Marc Schlenker
  • Affiliation: Laboratoire Emile Picard, UMR CNRS 5580, UFR MIG, Université Paul Sabatier, 31062 Toulouse Cedex 9, France
  • MR Author ID: 362432
  • Email: schlenker@math.ups-tlse.fr
  • Received by editor(s): March 8, 2005
  • Published electronically: December 20, 2006
  • © Copyright 2006 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Trans. Amer. Math. Soc. 359 (2007), 2155-2189
  • MSC (2000): Primary 53C45, 53C50, 51M16
  • DOI: https://doi.org/10.1090/S0002-9947-06-04172-9
  • MathSciNet review: 2276616