Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Korovkin tests, approximation, and ergodic theory
HTML articles powered by AMS MathViewer

by Stefano Serra Capizzano PDF
Math. Comp. 69 (2000), 1533-1558 Request permission

Abstract:

We consider sequences of $s\cdot k(n)\times t\cdot k(n)$ matrices $\{A_n(f)\}$ with a block structure spectrally distributed as an $L_1$ $p$-variate $s\times t$ matrix-valued function $f$, and, for any $n$, we suppose that $A_n(\cdot )$ is a linear and positive operator. For every fixed $n$ we approximate the matrix $A_n(f)$ in a suitable linear space $\mathcal {M}_n$ of $s\cdot k(n)\times t\cdot k(n)$ matrices by minimizing the Frobenius norm of $A_n(f)-X_n$ when $X_n$ ranges over $\mathcal {M}_n$. The minimizer $\hat {X}_n$ is denoted by $\mathcal {P}_{k(n)}(A_n(f))$. We show that only a simple Korovkin test over a finite number of polynomial test functions has to be performed in order to prove the following general facts:

  1. the sequence $\{\mathcal {P}_{k(n)}(A_n(f))\}$ is distributed as $f$,

  2. the sequence $\{A_n(f)-\mathcal {P}_{k(n)}(A_n(f))\}$ is distributed as the constant function $0$ (i.e. is spectrally clustered at zero).

The first result is an ergodic one which can be used for solving numerical approximation theory problems. The second has a natural interpretation in the theory of the preconditioning associated to cg-like algorithms.

References
  • Owe Axelsson and Gunhild Lindskog, On the eigenvalue distribution of a class of preconditioning methods, Numer. Math. 48 (1986), no. 5, 479–498. MR 839613, DOI 10.1007/BF01389447
  • Rajendra Bhatia, Matrix analysis, Graduate Texts in Mathematics, vol. 169, Springer-Verlag, New York, 1997. MR 1477662, DOI 10.1007/978-1-4612-0653-8
  • Dario Bini and Victor Y. Pan, Polynomial and matrix computations. Vol. 1, Progress in Theoretical Computer Science, Birkhäuser Boston, Inc., Boston, MA, 1994. Fundamental algorithms. MR 1289412, DOI 10.1007/978-1-4612-0265-3
  • N. Bonanni, ProprietĂ  spettrali e computazionali di algebre di matrici. Graduate Thesis in Computer Science, University of Pisa, 1993.
  • Raymond H. Chan and Michael K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38 (1996), no. 3, 427–482. MR 1409592, DOI 10.1137/S0036144594276474
  • Tony F. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Comput. 9 (1988), no. 4, 766–771. MR 945937, DOI 10.1137/0909051
  • Philip J. Davis, Circulant matrices, A Wiley-Interscience Publication, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 543191
  • Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
  • F. Di Benedetto and S. Serra Capizzano, “A unifying approach to abstract matrix algebra preconditioning”, Numer. Math., 82-1 (1999), pp. 57–90.
  • F. Di Benedetto and S. Serra Capizzano, “Optimal and superoptimal matrix algebra operators”, TR nr. 360, Dept. of Mathematics - Univ. of Genova (1997).
  • G. Fiorentino and S. Serra, Fast parallel solvers for elliptic problems, Comput. Math. Appl. 32 (1996), no. 2, 61–68. MR 1398257, DOI 10.1016/0898-1221(96)00103-4
  • Walter Gautschi, The condition of Vandermonde-like matrices involving orthogonal polynomials, Linear Algebra Appl. 52/53 (1983), 293–300. MR 709357, DOI 10.1016/0024-3795(83)80020-2
  • Ulf Grenander and Gábor SzegĹ‘, Toeplitz forms and their applications, 2nd ed., Chelsea Publishing Co., New York, 1984. MR 890515
  • Eugene Isaacson and Herbert Bishop Keller, Analysis of numerical methods, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0201039
  • C. Jordan, Cours d’Analyse de l’Ecole Polytecnique: Vol. I. Gauthier-Villars, Paris, France, 1909. Reprint,
  • T. Kailath and V. Olshevsky, “Displacement structure approach to discrete-trigonometric-transform based preconditioners of G. Strang type and T. Chan type”, Proc. “Workshop on Toeplitz matrices” Cortona (Italy), September 1996. Calcolo, 33 (1996), pp. 191–208.
  • P. P. Korovkin, Linear operators and approximation theory, Russian Monographs and Texts on Advanced Mathematics and Physics, Vol. III, Gordon and Breach Publishers, Inc., New York; Hindustan Publishing Corp. (India), Delhi, 1960. Translated from the Russian ed. (1959). MR 0150565
  • Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
  • Stefano Serra, Optimal, quasi-optimal and superlinear band-Toeplitz preconditioners for asymptotically ill-conditioned positive definite Toeplitz systems, Math. Comp. 66 (1997), no. 218, 651–665. MR 1401945, DOI 10.1090/S0025-5718-97-00833-8
  • S. Serra, “A Korovkin-type Theory for finite Toeplitz operators via matrix algebras”, Numer. Math., 82-1 (1999), pp. 117–142.
  • Stefano Serra Capizzano, An ergodic theorem for classes of preconditioned matrices, Linear Algebra Appl. 282 (1998), no. 1-3, 161–183. MR 1648324, DOI 10.1016/S0024-3795(98)80002-5
  • S. Serra Capizzano, “A Korovkin based approximation of multilevel Toeplitz matrices (with rectangular unstructured blocks) via multilevel Trigonometric matrix spaces”, SIAM J. Numer. Anal., 36-6 (1999), pp. 1831–1857.
  • S. Serra Capizzano, “Approximation of multilevel Toeplitz matrices via multilevel Trigonometric matrix spaces and application to the preconditioning”, Calcolo, 36 (1999), pp. 187–213.
  • Stefano Serra Capizzano, Korovkin theorems and linear positive Gram matrix algebra approximations of Toeplitz matrices, Linear Algebra Appl. 284 (1998), no. 1-3, 307–334. ILAS Symposium on Fast Algorithms for Control, Signals and Image Processing (Winnipeg, MB, 1997). MR 1655142, DOI 10.1016/S0024-3795(98)10072-1
  • S. Serra Capizzano and C. Tablino Possio, “Spectral and structural analysis of high order finite difference matrices for Elliptic Operators”, Linear Algebra Appl. 293 (1999), 85–131.
  • Stefano Serra, On the extreme eigenvalues of Hermitian (block) Toeplitz matrices, Linear Algebra Appl. 270 (1998), 109–129. MR 1484077
  • S. Serra Capizzano, “Some theorems on linear positive operators and functionals and their applications”, TR nr. 26, LAN, Dept. of Mathematics - Univ. of Calabria (1997). Comput. Math. Appl., in press.
  • S. Serra Capizzano and P. Tilli, “Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices”, J. Comput. and Appl. Math. 108 (1999), 113–130.
  • Paolo Tilli, A note on the spectral distribution of Toeplitz matrices, Linear and Multilinear Algebra 45 (1998), no. 2-3, 147–159. MR 1671591, DOI 10.1080/03081089808818584
  • P. Tilli, Locally Toeplitz sequences: spectral properties and applications, Linear Algebra Appl. 278 (1998), no. 1-3, 91–120. MR 1637331, DOI 10.1016/S0024-3795(97)10079-9
  • Evgenij E. Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and clustering, Linear Algebra Appl. 232 (1996), 1–43. MR 1366576, DOI 10.1016/0024-3795(94)00025-5
  • E. E. Tyrtyshnikov and N. L. Zamarashkin, Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships, Linear Algebra Appl. 270 (1998), 15–27. MR 1484073
  • Studies in real and complex analysis, Studies in Mathematics, Vol. 3, Mathematical Association of America, Buffalo, N.Y.; Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. I. I. Hirschman, Jr., editor. MR 0183600
Similar Articles
Additional Information
  • Stefano Serra Capizzano
  • Affiliation: Dipartimento di Energetica, Via Lombroso 6/17, 50134 Firenze, Italy; Dipartimento di Informatica, Corso Italia 40, 56100 Pisa, Italy
  • MR Author ID: 332436
  • Email: serra@mail.dm.unipi.it
  • Received by editor(s): February 2, 1998
  • Received by editor(s) in revised form: November 20, 1998
  • Published electronically: March 6, 2000
  • © Copyright 2000 American Mathematical Society
  • Journal: Math. Comp. 69 (2000), 1533-1558
  • MSC (1991): Primary 65F10, 65D15, 15A60, 47B65, 28Dxx
  • DOI: https://doi.org/10.1090/S0025-5718-00-01217-5
  • MathSciNet review: 1697646