Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

High order discretization schemes for the CIR process: Application to affine term structure and Heston models
HTML articles powered by AMS MathViewer

by Aurélien Alfonsi PDF
Math. Comp. 79 (2010), 209-237 Request permission

Abstract:

This paper presents weak second and third order schemes for the Cox-Ingersoll-Ross (CIR) process, without any restriction on its parameters. At the same time, it gives a general recursive construction method for getting weak second order schemes that extend the one introduced by Ninomiya and Victoir. Combine both these results, this allows us to propose a second order scheme for more general affine diffusions. Simulation examples are given to illustrate the convergence of these schemes on CIR and Heston models.
References
  • Aurélien Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes, Monte Carlo Methods Appl. 11 (2005), no. 4, 355–384. MR 2186814, DOI 10.1163/156939605777438569
  • Andersen, L. (2008). Simple and efficient simulation of the Heston stochastic volatility model. Journal of Computational Finance, Vol. 11, No. 3.
  • Leif B. G. Andersen and Vladimir V. Piterbarg, Moment explosions in stochastic volatility models, Finance Stoch. 11 (2007), no. 1, 29–50. MR 2284011, DOI 10.1007/s00780-006-0011-7
  • V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function, Probab. Theory Related Fields 104 (1996), no. 1, 43–60. MR 1367666, DOI 10.1007/BF01303802
  • Abdel Berkaoui, Mireille Bossy, and Awa Diop, Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence, ESAIM Probab. Stat. 12 (2008), 1–11. MR 2367990, DOI 10.1051/ps:2007030
  • Bossy, M. and Diop, A. (2004). An efficient discretisation scheme for one dimensional SDEs with a diffusion coefficient function of the form $|x|^a$, $a$ in [1/2,1). RR-5396, INRIA, Décembre 2004.
  • Damiano Brigo and Aurélien Alfonsi, Credit default swap calibration and derivatives pricing with the SSRD stochastic intensity model, Finance Stoch. 9 (2005), no. 1, 29–42. MR 2210926, DOI 10.1007/s00780-004-0131-x
  • Damiano Brigo and Fabio Mercurio, Interest rate models—theory and practice, 2nd ed., Springer Finance, Springer-Verlag, Berlin, 2006. With smile, inflation and credit. MR 2255741
  • Broadie, M. and Kaya, Ö. (2003). Exact simulation of stochastic volatility and other affine jump diffusion processes, Working Paper.
  • John C. Cox, Jonathan E. Ingersoll Jr., and Stephen A. Ross, A theory of the term structure of interest rates, Econometrica 53 (1985), no. 2, 385–407. MR 785475, DOI 10.2307/1911242
  • Dai, Q. and Singleton, K. (2000). Specification Analysis of Affine Term Structure Models, The Journal of Finance, Vol. LV, No. 5, pp. 1943-1978.
  • G. Deelstra and F. Delbaen, Convergence of discretized stochastic (interest rate) processes with stochastic drift term, Appl. Stochastic Models Data Anal. 14 (1998), no. 1, 77–84. MR 1641781, DOI 10.1002/(SICI)1099-0747(199803)14:1<77::AID-ASM338>3.0.CO;2-2
  • Diop, A. (2003). Sur la discrétisation et le comportement à petit bruit d’EDS multidimensionnelles dont les coefficients sont à dérivées singulières, Ph.D. Thesis, INRIA. (available at http://www.inria.fr/rrrt/tu-0785.html)
  • Paul Glasserman, Monte Carlo methods in financial engineering, Applications of Mathematics (New York), vol. 53, Springer-Verlag, New York, 2004. Stochastic Modelling and Applied Probability. MR 1999614
  • Heston, S. (1993). A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. The Review of Financial Studies, Vol. 6, No. 2, pp. 327-343.
  • Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, 2nd ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR 1121940, DOI 10.1007/978-1-4612-0949-2
  • Christian Kahl and Henri Schurz, Balanced Milstein methods for ordinary SDEs, Monte Carlo Methods Appl. 12 (2006), no. 2, 143–170. MR 2237671, DOI 10.1163/156939606777488842
  • Lord, R., Koekkoek, R. and van Dijk, D. (2006). A comparison of biased simulation schemes for stochastic volatility models, working paper, Erasmus University Rotterdam, Rabobank International and Robeco Alternative Investments.
  • Syoiti Ninomiya and Nicolas Victoir, Weak approximation of stochastic differential equations and application to derivative pricing, Appl. Math. Finance 15 (2008), no. 1-2, 107–121. MR 2409419, DOI 10.1080/13504860701413958
  • Gilbert Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal. 5 (1968), 506–517. MR 235754, DOI 10.1137/0705041
  • Denis Talay, Discrétisation d’une équation différentielle stochastique et calcul approché d’espérances de fonctionnelles de la solution, RAIRO Modél. Math. Anal. Numér. 20 (1986), no. 1, 141–179 (French, with English summary). MR 844521, DOI 10.1051/m2an/1986200101411
  • Denis Talay and Luciano Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Anal. Appl. 8 (1990), no. 4, 483–509 (1991). MR 1091544, DOI 10.1080/07362999008809220
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2000): 60H35, 65C30, 91B70
  • Retrieve articles in all journals with MSC (2000): 60H35, 65C30, 91B70
Additional Information
  • Aurélien Alfonsi
  • Affiliation: CERMICS, MATHFI Project, Ecole des Ponts, 6-8 avenue Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne-la-vallée, France
  • Email: alfonsi@cermics.enpc.fr
  • Received by editor(s): October 24, 2008
  • Received by editor(s) in revised form: December 16, 2008
  • Published electronically: June 15, 2009
  • Additional Notes: Most of this work was done when I was at the TU Berlin, thanks to the support of MATHEON. I would like to thank Vlad Bally (Univ. Marne-la-Vallée) and Benjamin Jourdain (Ecole des Ponts) for fruitful comments, and Victor Reutenauer (CALyon) for stimulating discussions on ATSM
  • © Copyright 2009 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Math. Comp. 79 (2010), 209-237
  • MSC (2000): Primary 60H35, 65C30; Secondary 91B70
  • DOI: https://doi.org/10.1090/S0025-5718-09-02252-2
  • MathSciNet review: 2552224