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Intermediate Values
With the restoration of King Louis XVIII of France
in 1814, one revolution had come to an end,
but another was just beginning. Historians often
describe the French Revolution of 1789, along with
its reactions and repercussions, as the start of the
modern era. For many historians of mathematics,
however, the modern era began with the Bourbon
Restoration and the mathematics of Augustin-Louis
Cauchy.

In a 1972 talk at a Mathematical Association of
America sectional meeting, Judith Grabiner offered
an important interpretation of this critical juncture
in the history of mathematics [5]. Asking whether
mathematical truth was time dependent, Grabiner
argued that while truths themselves may not
depend on time, our knowledge certainly does. She
stressed the revolutionary character of Cauchy and
his contemporaries’ efforts to set mathematical
analysis on a rigorous footing, which required
applying a fundamentally new point of view to the
problems and methods of their eighteenth-century
forebears. One of Grabiner’s leading illustrations
of this point, both in her talk and in her 1981
book on Cauchy’s calculus [6], is Cauchy’s proof of
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the intermediate value theorem, that a continuous
real-valued function f on an interval [a, b] assumes
every value between f (a) and f (b) on that interval.

Today the intermediate value theorem (IVT) is
one of the first theorems about functions that
advanced undergraduates learn in courses on math-
ematical analysis. These courses in turn are often
the first places such students are comprehensively
taught the methods of rigorous proof at the heart
of contemporary mathematics. Here the theorem
and its proof exemplify several important aspects
of rigorous analysis. At first glance, the theorem
seems obvious. Indeed, generations of mathemati-
cians before Cauchy thought its idea so obvious as
not to need explicit statement or justification. On
the other hand, that the theorem can be proved
with just some simple notions about continuity,
convergence, and the system of real numbers is
something quite remarkable. Students learn to take
nothing for granted, to proceed systematically, and
to use approximations and limiting principles to
turn vague intuitions about the nature of functions
into indubitable theorems.

Cauchy’s undergraduate course in analysis at
the École Royale Polytechnique, which he began
teaching in 1816, was among the first to include
a proof of the intermediate value theorem. His
1821 textbook [4] (recently released in full English
translation [3]) was widely read and admired by a
generation of mathematicians looking to build a
new mathematics for a new era, and his proof of
the intermediate value theorem in that textbook
bears a striking resemblance to proofs of the
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theorem that continue to be taught almost two
centuries later.

With this in mind you might be surprised to learn
that the theorem was proved twice in Cauchy’s
textbook, and that his more famous proof was
relegated to an appendix, while Cauchy’s main
proof has been mostly forgotten by mathematicians
and historians alike. Putting these two proofs side
by side, we can add a new dimension to Grabiner’s
story by asking just what rigorous analysis meant
for Cauchy at the dawn of modern mathematics.
When Cauchy’s language and methods are carefully
dissected, he begins to look less like a far-sighted
revolutionary who simply saw profound new
meanings in old results. Instead, I argue (see also [1])
that Cauchy was “stuck in the middle”: struggling to
reclaim what he saw to be a neglected approach to
mathematics while (perhaps inadvertently) pushing
mathematicians toward a particular understanding
of analytic rigor that would help define their future.

A Mathematical Revolution
Underneath the slogans of liberty, equality, and
fraternity and behind the barricades and the bluster
of the French Revolution, there was a massive
transformation in the organization of the French
state and society. For the world of mathematics,
these transformations meant that, for the first time,
a large cadre of elite military and civil engineers
began to receive a common training in Paris in
the most advanced mathematics of the day. These
engineers took their mathematics and applied it to
the pressing problems of the modern world: mass
infrastructure, navigation, mining, energy, and
war. The flagship institution where these students
learned to draw, compute Taylor expansions, and
see the world through mathematical eyes was the
École Polytechnique (renamed the École Royale
Polytechnique after Napoleon’s defeat and the
monarchy’s return), and it was there that Cauchy
made his mark as a student and then as an
instructor.

Despite his acclaim beyond the walls of the
École, Cauchy was not the most popular instructor
among either his students or his fellow faculty.
He regularly overran his allotted lecture time; his
courses could be dense and difficult to follow; he
revised the curriculum with abandon, disregarding
the pleas of those teaching courses for which his
was a prerequisite. His foes among the faculty
grumbled that Cauchy, a devout Catholic and
staunch supporter of the monarchy, was a bitter
reactionary who owed his job more to the changing
winds of national politics than to his brilliance as
a teacher.1

1On Cauchy’s interconnected politics, religion, and peda-
gogy, see [2].

In Cauchy’s view, however, a restoration was just
as much due for mathematics as it had been after
the regrettable revolution in France, and it was
no use arguing with the misguided mathematical
Jacobins or Bonapartists who would have it other-
wise. When Cauchy looked at the mathematics of
the eighteenth century, he saw a discipline that
had lost its discipline. Undoubtedly, the century
had witnessed a host of marvelous mathematical
innovations, but at what cost? Mathematicians
such as Leonhard Euler freely toyed with noncon-
vergent series and ungrounded formal expressions
and did not bat an eyelash when these produced
absurd conclusions. Amidst the swirl of infinities,
heuristics, imaginary numbers and more, it was
hard to know what to believe.

At stake for Cauchy was the proper relationship
between algebra and geometry. Geometry, as
most saw it, was the ancient and noble science of
magnitudes initiated by the Greeks and particularly
associated with Euclid.2 On the one hand, geometry
referred to a specific body of problems and
techniques associated with shapes and magnitudes.
On the other hand, however, geometry was an
emblem of philosophical exactitude and precision.
Mathematicians and philosophers alike sought to
proceed in the more geometrico, or geometric way,
stating their assumptions carefully and reasoning
systematically in order to produce results with
absolute certainty.

Algebra, like geometry, could refer to a body of
problems and techniques. From Viète and Descartes
to Laplace and Lagrange, mathematicians (not all of
them French) had developed the symbolic methods
of algebra into a powerful tool for studying a wide
range of mathematical phenomena, including those
traditionally associated with geometry.3 Also, like
geometry, algebra had an implicit philosophical
meaning that tied it to the unrestrained pursuit
of mathematical ideas, regardless of whether each
individual step had a clear geometric or physical
interpretation. Eighteenth-century mathematicians
saw in algebra a versatile tool for obtaining deep
understandings of the world around them.

Algebra and geometry thus represented com-
peting values. Algebraic mathematicians valued
the profound mathematical truths their methods
could reveal and ridiculed geometric mathemati-
cians for their overzealous commitment to tedious
proofs at the expense of vital creativity. Geometric

2When Cauchy wrote his textbook, non-Euclidean geome-
tries were still just over the horizon of mathematical
theory.
3The specific body of theory and techniques we now call ab-
stract algebra was, like non-Euclidean geometry, still just
beginning to emerge as Cauchy wrote. Some of Cauchy’s
earliest work was on problems we might now consider in
this area.
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mathematicians like Cauchy, by contrast, reviled
the monstrosities that algebraic mathematics oc-
casionally produced and sought protection in the
rigorous certainties of their methods. Cauchy’s
textbook famously declared his desire to give his
methods “all the rigor one requires in geometry,
in such a way as never to resort to reasons drawn
from the generality of algebra.” Rarely, of course,
were the values of algebra and geometry so sharply
delineated. It was often in polemical writings such
as Montucla’s monumental history of mathematics
[7, e.g., pp. 11, 270] or the introduction to Cauchy’s
textbook rather than in everyday mathematical
work or in the École’s courses on drawing and
practical mathematics that these stakes loomed
large. Nevertheless, the tension was real, and (at
least as Cauchy saw it) algebra was winning.

Two Proofs
Cauchy’s textbook introduces the intermediate
value theorem by noting a “remarkable property
of continuous functions of a single variable”:
that they can represent the geometric ordinates
of continuous curves [4, p. 43]. Contrary to our
present emphasis on the theorem in terms of
the analytic properties of continuous functions,
for Cauchy the theorem is foremost about the
relationship between functions and geometry. This,
we shall see, was not just his motivation but the
central idea in his proof.

The theorem’s statement is recognizable to
readers today, even if the precise wording and
notation appear unusual:

Theorem (Cauchy’s IVT). If the function f (x) is
continuous with respect to the variable x between
the limits x = x0 and x = X and if b designates a
quantity between f (x0) and f (X), one can always
satisfy the equation

f (x) = b
for one or several real values of x between x0 and
X.

But Cauchy’s main proof of the theorem looks
nothing like the proof we now associate with him.
Here is a rather literal translation:

Proof. To establish the preceding proposition, it
suffices to see that the curve whose equation is

y = f (x)
meets one or more times the straight line whose
equation is

y = b
in the interval between the ordinates that corre-
spond to the abscissas x0 and X. Yet it is clear that
this will take place under our hypotheses. Indeed,
as the function f (x) is continuous between the lim-
its x = x0 [and] x = X, the curve whose equation is

y = f (x) passing first through the point with coor-
dinates x0, f (x0) and second through the point with
coordinatesX and f (X)will be continuous between
these two points; and, as the constant ordinate b of
the line whose equation is y = b is found between
the ordinates f (x0) and f (X) of the two points
under consideration, the line [corresponding to
y = b] will necessarily pass between these two
points so that it cannot avoid crossing the above-
mentioned curve [corresponding to y = f (x)] in
the interval. �

The first thing to notice is that, while Cauchy
employs several variables and equations, he uses
these symbolic expressions purely to describe
curves and lines in a plane. There are no algebraic
manipulations whatsoever, much less sequences,
bounds, or limits. He presents the continuous
function f (x) as an unbroken curve connecting two
points, and his proof hinges on a claim that a level
line corresponding to the desired intermediate
value must cross this curve. The argument is vague
and unsystematic by our standards. Even though
Cauchy has just given a definition of continuity,4

his proof makes no use of it. Instead, the notion
of continuity in this proof means simply that the
function’s corresponding curve remains unbroken.

Was Cauchy sloppy, lazy, or inconsistent with
this proof? I have found nothing to suggest that
he or his contemporaries had second thoughts
about it.5 Instead, we should see this as evidence
of Cauchy’s faith in geometric reasoning and his
lingering distrust of algebra. Arguments based
on unbroken planar curves were sensible and
trustworthy to Cauchy in a way that arguments
based on symbols and equations were not. Because

4Cauchy’s definition of continuity will also appear unusual
to those expecting epsilons, deltas, quantifiers, and conver-
gence. He defines continuous functions as those for which
the difference f (x+α)− f (x) is infinitesimally small when
α is. See [4, pp. 34–35]. There is considerable secondary lit-
erature on Cauchy’s “infinitesimally small quantities” and
their relationship to various ideas about variables, continu-
ity, and convergence. In particular, while some have argued
his notions were ultimately equivalent to ideas developed in
either “epsilontic” or nonstandard analysis, most agree that
Cauchy omitted or left implicit many important ideas and
intuitions about his infinitesimally small quantities.
5One might be tempted to dismiss this proof as merely a
pedagogically oriented plausibility argument, but Cauchy
himself makes no such excuse for it, and such a move would
be exceptional in a textbook meant to showcase his model of
rigor. His allusion to the “direct and purely analytic” proof
in the appendix is sometimes read as an admission that the
above proof is inadequate, but this view substitutes later val-
ues of analytic rigor where Cauchy’s own priorities are at
best unclear. The best evidence of Cauchy’s view remains
the fact that he calls this argument a proof (something he
does not do for every argument following a stated theorem)
and places it prominently in the body of his textbook.
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he could visualize two curves crossing, he needed
no further argument to establish his theorem.
Here the “rigor of geometry” involved not just
careful systematic reasoning but the use of a
fundamentally geometric argument.

Cauchy’s more famous proof of the intermediate
value theorem comes in an appendix on solving
equations numerically. Here the above theorem
becomes a corollary to the first theorem of the
appendix, which states that if a function is contin-
uous between x = x0 and x = X and if f (x0) and
f (X) have opposite signs, then there is at least
one root satisfying f (x) = 0 between x0 and X.
One applies this result to the function f (x)− b to
obtain the familiar theorem.

Grabiner [5, p. 362] is among many who note
that the proof in Cauchy’s appendix is based on
a method of approximating roots that was well
known in Cauchy’s time. Cauchy supposes that
the interval between x0 and X has length h and
divides the interval into m parts of length h/m
for some m greater than 1. Inspecting values
of f for consecutive terms of this sequence
and picking one pair of such terms where the
corresponding values of f have opposite signs,
Cauchy then subdivides this new interval of length
h/m into m parts of length h/m2 and repeats the
process to produce two sequences of x values.
The first, denoted x0, x1, x2, . . ., is increasing, while
the second, (X,X′, X′′, . . .), is decreasing, with
corresponding terms in the two sequences coming
closer and closer together.

From this, Cauchy concludes that the sequences
have a common limit a. Without citing his earlier
theorem that continuous functions map convergent
sequences to convergent sequences, he then simply
stipulates that the sequences

f (x0), f (x1), f (x2), . . .

and
f (X), f (X′), f (X′′), . . .

must both converge to f (a). Finally, Cauchy claims
that, because corresponding terms of these two
sequences have opposite signs, f (a)must have the
value 0.

At first glance, this is a pure example of
the rigorous algebraic analysis for which Cauchy
is known today. Nevertheless, we can still see
Cauchy’s preference for geometric reasoning. On
the one hand, Cauchy’s proof does more than one
would expect if the goal were simply to prove
the existence of a root. Why, for instance, carry
out the argument with an arbitrary value of m
when simply halving the interval each time is
sufficient? Cauchy’s rhetoric makes it clear that he
continues to see his procedure primarily as a tool
of approximation rather than as an existence proof.
Thus he makes repeated reference to the possibility

of there being multiple roots and elaborates on
this point in two of the three scholia that follow the
proof. The first such scholium is even more directly
about approximation: it notes that the average of
the terms xn and X(n) is at most a distance 1

2
X−x0
mn

from the desired root a—an observation that is
extraneous (in the context of Cauchy’s argument)
to the question of whether such a root exists
but is important when one cares about rates of
convergence for approximations.

Why, for that matter, did Cauchy try to find
a root instead of an arbitrary intermediate value
b? The proof would need few modifications to
fit this more general case. Making this theorem
about roots rather than arbitrary values allowed
Cauchy to preserve it as an argument about a
curve meeting a line (in this case, the x-axis). At
the same time, while finding arbitrary values was
(simply put) a rather arbitrary thing to do, the
engineers-in-training at the École would have had
many occasions to find roots in the course of their
work and studies.

On the other hand, Cauchy leaves several
potentially important ideas between the lines. We
know, for instance, what it means for terms to be
pairwise of opposite signs, but what does this mean
in the limit of a sequence? Proofs today typically
specify one sequence of values as approaching the
intermediate value from below and the other from
above. Indeed, it is striking that, though the proof
discusses sequences and values with opposite
signs, the only symbolic inequalities in the entire
argument are used for values of x and never for
values of f (x). For both x and f (x), Cauchy refers
frequently not just to values but to quantities,
implying that they have geometric magnitudes.

This explains, in part, why Cauchy so freely
makes claims about the convergence and limits
of the sequences obtained in his proof. As a
pure matter of algebraic abstractions, one needs
a lemma to assert that the common limit of
the sequences f (x0), f (x1), . . . and f (X), f (X′), . . .
would equal f (a). As a matter of geometry, however,
the identity might not strike one as requiring a
separate argument or citation.

It would not be until several decades after
Cauchy’s course was published that mathemati-
cians would systematically attempt to define
teratological functions that defied the intuitions
associated with the usual mechanical problems
of polytechnical mathematics. In Cauchy’s time,
mathematical analysis remained first and foremost
the mathematical study of the world—a world
filled with complex phenomena but also a world
exhibiting profound regularities. Cauchy’s course,
for instance, assumes that all continuous functions
are differentiable; indeed, all the continuous func-
tions he might care to differentiate were more or
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less smooth. In a sense, then, Cauchy’s preference
for geometry reflected a desire to remain true to
the world and to use only those mathematical
techniques that genuinely reflected worldly mag-
nitudes, even if this limited what he could say
mathematically about that world.6

Stuck in the Middle
The peculiarities of Cauchy’s proofs help us see
that the rigor Cauchy prized was something
quite different from the rigor we now associate
with his name. When Cauchy objected to the
mathematics of his predecessors, he did not find
them lacking in their adherence to formal rules
for symbolic manipulation. Quite the contrary,
he felt mathematicians in the preceding century
trusted such rules altogether too much. With this
in mind, it is not surprising that Cauchy’s project
of reform was not, at its heart, based on carefully
placed quantifiers, deftly manipulated sequences
and inequalities, and meticulous logical exactitude.

To tame the dangerous fashion for algebra,
Cauchy demanded a return to geometry in both
its senses. He is remembered today for making
his proofs systematic and logical, but his own
proofs place a clearer emphasis on the geometry
of magnitudes, not the geometry of methods.
Cauchy sought to save mathematical analysis by
ensuring that its powerful algebraic tools stayed
true to the world of geometry, hence his insistence
on convergence and his caution when defining
imaginary and even negative numbers. Where
he did not see any danger of symbols losing
their geometric referents, as in his proofs of the
intermediate value theorem, he could in fact be
quite lax with their use.

In this sense, Cauchy’s analysis appears sur-
prisingly regressive. The rigor he advocated was
a return to geometric reasoning that a century of
mathematicians had rejected as stale, tedious, and
counterproductive. His methods were difficult, and
his students and colleagues frequently lamented
their cumbersome impracticality. And yet, Cauchy
seems now to have won the day.

How could such a reactionary mathematician so
transform the mathematics of his generation in a
way that now appears progressive and visionary?
Cauchy realized he could not do away with algebra
even in his own mathematics. Rather than throw
algebra out entirely, he worked to endow algebra
with the virtuous rigors of geometry by developing
algebraic criteria to match geometric reasoning. In
so doing, he advanced the idea that it was possible
to have it both ways: to enjoy the power of algebraic
thinking while still adhering to the discipline and

6I elaborate in [1] how this mathematical impulse relates to
Cauchy’s religious and political conservatism.

certitude of geometry. All one needed was to put
the demands of geometry in algebraic terms.

Thus Cauchy’s rules for convergence and his
attention to the limits of formal expressions’ valid-
ity created new problems and new opportunities.
He opened up ways of studying mathematical
phenomena that remain vital nearly two centuries
later. While his approach proved durable, its initial
motivation could easily be forgotten. The ensuing
generation of European mathematicians latched
on to his disciplined way of studying the meanings
of formal expressions while jettisoning his pre-
occupation with the geometry of magnitudes. From
them, we have the beginnings of the set-theoretic
foundations of analysis that undergraduates learn
today.

Of course not even the set theorists had the final
word on rigor. Mathematicians must constantly
balance what methods are worthwhile, what argu-
ments are convincing, and what values are worth
conveying to students. Those dismayed by the lack
of consensus on these points today or wishing that
opponents could simply see that their positions
are illogical, unrigorous, or counterproductive can
take comfort in the fact that these debates are not
just a normal part of the history of mathematics,
but that they can help to spur new ideas and
approaches, often in unexpected ways. Studying
the history of mathematics, we can appreciate that
in some ways we are all, like Cauchy, stuck in
the middle between our discipline’s past and its
open-ended future.
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