Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-07T10:51:22.526Z Has data issue: false hasContentIssue false

The Brauer-Manin Obstruction and III[2]

Published online by Cambridge University Press:  01 February 2010

M.J. Bright
Affiliation:
Department of Mathematics, University Walk, Bristol BS8 1TWUnited KingdomM.Bright@bristol.ac.uk
N. Bruin
Affiliation:
Department of Mathematics, Simon Fraser University, BurnabyCanada V5A 1S6nbruin@cecm.sfu.cahttp://www.cecm.sfu.ca/~nbruin
E.V Flynn
Affiliation:
Mathematical Institute, University of Oxford, 24-29 St. Giles, Oxford 0X1 3LB, United Kingdomflynn@maths.ox.ac.ukhttp://www.maths.ox.ac.uk/~flynn
A. Logan
Affiliation:
Department of Pure Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1, a51ogan@math.uuaterloo.CA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the Brauer-Manin obstruction on del Pezzo surfaces of degree 4. We outline a detailed algorithm for computing the obstruction and provide associated programs in MAGMA. This is illustrated with the computation of an example with an irreducible cubic factor in the singular locus of the defining pencil of quadrics (in contrast to previous examples, which had at worst quadratic irreducible factors). We exploit the relationship with the Tate-Shafarevich group to give new types of examples of III [2], for families of curves of genus 2 of the form y2 = f(x), where f(x) is a quintic containing an irreducible cubic factor.

Type
Research Article
Copyright
Copyright © London Mathematical Society 2007

References

1.Bright, M. J., ‘Efficient evaluation of the Brauer-Manin obstruction’, Math.Proc. Cambridge Philos. Soc. 142 (2007) 1323.CrossRefGoogle Scholar
2.Bruin, N. and Flynn, E. V., ‘Exhibiting SHA[2] on hyperelliptic Jacobians’, J. Number Theory 118 (2006) 266291.CrossRefGoogle Scholar
3.Bruin, N. and Logan, A., ‘Electronic resources’, http://www.cecm.sfu.ca/~nbruin/BM0bstrAndSha.Google Scholar
4.Colliot-Thélène, J.-L., Kanevsky, D. and Sansuc, J.-J., ‘Arithmétique des surfaces cubiques diagonales’, Diophantine approximation and transcendence theory, Bonn, 1985, Lecture Notes in Math. 1290 (Springer, Berlin, 1987) 1108.CrossRefGoogle Scholar
5.Colliot-Thélène, J.-L., Sansuc, J.-J. and Swinnerton-Dyer, P., ‘Intersections of two quadrics and Châtelet surfaces. I’, J. Reine Angew. Math. 373 (1987) 37107.Google Scholar
6.Colliot-Thélène, J.-L., Sansuc, J.-J. and Swinnerton-Dyer, P., ‘Intersections of two quadrics and Châtelet surfaces. II’, J. Reine Angew. Math. 374 (1987) 72168.Google Scholar
7.Colliot-Thélène, J.-L., ‘L'arithmétique des variétés rationnelles’, Ann. Fac. Sci. Toulouse Math. (6) 1 (1992) 295336.CrossRefGoogle Scholar
8.Grothendieck, A., ‘Le groupe de Brauer I, II, III’, Dix exposés sur la cohomologie des schémas, ed.Giraud, J. et al. , Advanced Studies in Mathematics 3(North-Holland, Amsterdam, 1968) 46188.Google Scholar
9.Hürlimann, W., ‘Brauer group and Diophantine geometry: a cohomological approach’, Brauer groups in ring theory and algebraic geometry, Wilrijk, 1981, Lecture Notes in Math. 917 (Springer, Berlin, 1982) 4365.CrossRefGoogle Scholar
10.Kunyavskiĭ, B.È., Skorobogatov, A. N. and Tsfasman, M. A., ‘del Pezzo surfaces of degree four’, Mém. Soc. Math. France (N.S.) 113 (1989).Google Scholar
11.Logan, A., ‘MAGMA programs for computing the Brauer-Manin obstruction on a del Pezzo surface of degree 4’, http://www.math.uwaterloo.ca/~a51ogan/math/index.html.Google Scholar
12.Manin, Yu.I., ‘Le groupe de Brauer-Grothendieck en géométrie diophantienne’, Actes du Congrès International des Mathématiciens, Nice, 1970, Tome 1 (Gauthier-Villars, Paris, 1971) 401411.Google Scholar
13.Manin, Yu.I., Cubic forms: algebra, geometry, arithmetic, translated from the Russian by Hazewinkel, M., North-Holland Mathematical Library 4 (North-Holland, Amsterdam, 1974).Google Scholar
14.Reid, M., ‘Intersections of two quadrics’, PhD thesis, University of Cambridge, 1972.Google Scholar
15.Schaefer, E. F., ‘Computing a Selmer group of a Jacobian using functions on the curve’, Math. Ann. 310 (1998) 447471.CrossRefGoogle Scholar
16.Skorobogatov, A. N., ‘Beyond the Manin obstruction’, Invent. Math. 135(1999) 399424.CrossRefGoogle Scholar
17.Stoll, M., ‘Implementing 2-descent for Jacobians of hyperelliptic curves’,Acta Arith. 98 (2001) 245277.CrossRefGoogle Scholar
18.Swinnerton-Dyer, P., ‘The Brauer group of cubic surfaces’, Math. Proc. Cambridge Philos. Soc. 113 (1993) 449460.CrossRefGoogle Scholar
19.Swinnerton-Dyer, P., ‘Brauer-Manin obstructions on some Del Pezzo surfaces’, Math. Proc. Cambridge Philos. Soc. 125 (1999) 193198.CrossRefGoogle Scholar
20.Wittenberg, O., ‘Principe de Hasse pour les surfaces de del Pezzo de degré 4’, Ph.D. thesis, Université Paris XI Orsay, 2005.Google Scholar
Supplementary material: File

JCM 10 Bright et al Appendix A Part 1

Bright et al Appendix A Part 1

Download JCM 10 Bright et al Appendix A Part 1(File)
File 30 KB
Supplementary material: File

JCM 10 Bright et al Appendix A Part 2

Bright et al Appendix A Part 2

Download JCM 10 Bright et al Appendix A Part 2(File)
File 45.8 KB
Supplementary material: File

JCM 10 Bright et al Appendix A Part 3

Bright et al Appendix A Part 3

Download JCM 10 Bright et al Appendix A Part 3(File)
File 2.7 KB