Skip to main content
Log in

The manifold of isospectral symmetric tridiagonal matrices and realization of cycles by aspherical manifolds

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We consider the classical N. Steenrod’s problem of realization of cycles by continuous images of manifolds. Our goal is to find a class \( \mathcal{M}_n \) of oriented n-dimensional closed smooth manifolds such that each integral homology class can be realized with some multiplicity by an image of a manifold from the class \( \mathcal{M}_n \). We prove that as the class \( \mathcal{M}_n \) one can take a set of finite-fold coverings of the manifold M n of isospectral symmetric tridiagonal real (n + 1) × (n + 1) matrices. It is well known that the manifold M n is aspherical, its fundamental group is torsion-free, and its universal covering is diffeomorphic to ℝn. Thus, every integral homology class of an arcwise connected space can be realized with some multiplicity by an image of an aspherical manifold with a torsion-free fundamental group. In particular, for any closed oriented manifold Q n, there exists an aspherical manifold that has torsion-free fundamental group and can be mapped onto Q n with nonzero degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki, Éléments de mathématique, Fasc. 34: Groupes et algèbres de Lie, Chapitres IV, V et VI (Hermann, Paris, 1968; Mir, Moscow, 1972).

    Google Scholar 

  2. V. M. Buchstaber, “Modules of Differentials of the Atiyah-Hirzebruch Spectral Sequence. I, II,” Mat. Sb. 78(2), 307–320 (1969) [Math. USSR, Sb. 7, 299–313 (1969)]; Mat. Sb. 83 (1), 61–76 (1970) [Math. USSR, Sb. 12, 59–75 (1970)].

    MathSciNet  Google Scholar 

  3. V. M. Buchstaber and T. E. Panov, Torus Actions in Topology and Combinatorics (MTsNMO, Moscow, 2004) [in Russian].

    Google Scholar 

  4. E. B. Vinberg, “Discrete Linear Groups Generated by Reflections,” Izv. Akad. Nauk SSSR, Ser. Mat. 35(5), 1072–1112 (1971) [Math. USSR, Izv. 5, 1083–1119 (1971)].

    MATH  MathSciNet  Google Scholar 

  5. A. A. Gaifullin, “Local Formulae for Combinatorial Pontryagin Classes,” Izv. Ross. Akad. Nauk, Ser. Mat. 68(5), 13–66 (2004) [Izv. Math. 68, 861–910 (2004)].

    MathSciNet  Google Scholar 

  6. A. A. Gaifullin, “Explicit Construction of Manifolds Realising Prescribed Homology Classes,” Usp. Mat. Nauk 62(6), 167–168 (2007) [Russ. Math. Surv. 62, 1199–1201 (2007)].

    MathSciNet  Google Scholar 

  7. A. A. Gaifullin, “Realisation of Cycles by Aspherical Manifolds,” Usp. Mat. Nauk 63(3), 157–158 (2008) [Russ. Math. Surv. 63, 562–564 (2008)].

    MathSciNet  Google Scholar 

  8. S. P. Novikov, “Homotopic Properties of Thom Complexes,” Mat. Sb. 57(4), 407–442 (1962).

    MathSciNet  Google Scholar 

  9. R. Thom, “Quelques propriétés globales des variétés différentiables,” Comment. Math. Helv. 28, 17–86 (1954).

    Article  MATH  MathSciNet  Google Scholar 

  10. M. W. Davis, “Groups Generated by Reflections and Aspherical Manifolds not Covered by Euclidean Space,” Ann. Math., Ser. 2, 117(2), 293–324 (1983).

    Google Scholar 

  11. M. W. Davis, “Some Aspherical Manifolds,” Duke Math. J. 55(1), 105–139 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  12. M. W. Davis and T. Januszkiewicz, “Convex Polytopes, Coxeter Orbifolds and Torus Actions,” Duke Math. J. 62(2), 417–451 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Eilenberg, “On the Problems of Topology,” Ann. Math., Ser. 2, 50, 247–260 (1949).

    Article  MathSciNet  Google Scholar 

  14. M. Ferri, “Una rappresentazione delle n-varietà topologiche triangolabili mediante grafi (n + 1)-colorati,” Boll. Unione Mat. Ital. B, Ser. 5, 13(1), 250–260 (1976).

    MATH  MathSciNet  Google Scholar 

  15. M. Ferri, C. Gagliardi, and L. Grasselli, “A Graph-Theoretical Representation of PL-Manifolds—a Survey on Crystallizations,” Aequationes Math. 31(2–3), 121–141 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. Pezzana, “Diagrammi di Heegaard e triangolazione contratta,” Boll. Unione Mat. Ital., Ser. 4, 12,Suppl. (3), 98–105 (1975).

    MathSciNet  Google Scholar 

  17. D. Sullivan, “Singularities in Spaces,” in Proc. Liverpool Singularities Symposium II (Springer, Berlin, 1971), Lect. Notes Math. 209, pp. 196–206.

    Chapter  Google Scholar 

  18. C. Tomei, “The Topology of Isospectral Manifolds of Tridiagonal Matrices,” Duke Math. J. 51(4), 981–996 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  19. G. M. Ziegler, Lectures on Polytopes (Springer, Berlin, 1995), Grad. Texts Math. 152.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Gaifullin, 2008, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2008, Vol. 263, pp. 44–63.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaifullin, A.A. The manifold of isospectral symmetric tridiagonal matrices and realization of cycles by aspherical manifolds. Proc. Steklov Inst. Math. 263, 38–56 (2008). https://doi.org/10.1134/S0081543808040044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543808040044

Keywords

Navigation