Skip to main content
Log in

Heat equations and families of two-dimensional sigma functions

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

In the framework of S.P. Novikov’s program for boosting the effectiveness of thetafunction formulas of finite-gap integration theory, a system of differential equations for the parameters of the sigma function in genus 2 is constructed. A counterpart of this system in genus 1 is equivalent to the Chazy equation. On the basis of the obtained results, a two-dimensional analog of the Frobenius-Stickelberger connection is defined and calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Athorne, J. C. Eilbeck, and V. Z. Enolskii, “A SL(2) Covariant Theory of Genus 2 Hyperelliptic Functions,” Math. Proc. Cambridge Philos. Soc. 136(2), 269–286 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Athorne, “Identities for Hyperelliptic -Functions of Genus One, Two and Three in Covariant Form,” J. Phys. A: Math. Theor. 41(41), 415202 (2008).

    Article  MathSciNet  Google Scholar 

  3. H. F. Baker, Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions (Cambridge Univ. Press, Cambridge, 1995; MTsNMO, Moscow, 2008).

    MATH  Google Scholar 

  4. H. F. Baker, “On the Hyperelliptic Sigma Functions,” Am. J. Math. 20, 301–384 (1898).

    Article  MATH  Google Scholar 

  5. H. F. Baker, An Introduction to the Theory of Multiply Periodic Functions (Cambridge Univ. Press, Cambridge, 1907).

    MATH  Google Scholar 

  6. H. W. Braden, V. Z. Enolskii, and A. N. W. Hone, “Bilinear Recurrences and Addition Formulae for Hyperelliptic Sigma Functions,” J. Nonlinear Math. Phys. 12(Suppl. 2), 46–62 (2005); arXiv:math.NT/0501162.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. M. Bukhshtaber and V. Z. Ènol’skii, “Abelian Bloch Solutions of the Two-Dimensional Schrödinger Equation,” Usp. Mat. Nauk 50(1), 191–192 (1995) [Russ. Math. Surv. 50, 195–197 (1995)].

    Google Scholar 

  8. V. M. Buchstaber, V. Z. Enolskiĭ, and D. V. Leĭkin, “Hyperelliptic Kleinian Functions and Applications,” in Solitons, Geometry, and Topology: On the Crossroad, Ed. by V. M. Buchstaber and S. P. Novikov (Am. Math. Soc., Providence, RI, 1997), AMS Transl., Ser. 2, 179, pp. 1–33.

    Google Scholar 

  9. V. M. Buchstaber, V. Z. Enolskii, and D. V. Leykin, “Kleinian Functions, Hyperelliptic Jacobians and Applications,” Rev. Math. Math. Phys. 10(2), 3–120 (1997).

    MATH  Google Scholar 

  10. V. M. Buchstaber, D. V. Leykin, and V. Z. Enolskii, “Rational Analogs of Abelian Functions,” Funkts. Anal. Prilozh. 33(2), 1–15 (1999) [Funct. Anal. Appl. 33, 83–94 (1999)].

    Google Scholar 

  11. V. M. Bukhshtaber, D. V. Leikin, and V. Z. Ènolskii, “σ-Functions of (n, s)-Curves,” Usp. Mat. Nauk 54(3), 155–156 (1999) [Russ. Math. Surv. 54, 628–629 (1999)].

    Google Scholar 

  12. V. M. Buchstaber, D. V. Leykin, and V. Z. Enolskii, “Uniformization of Jacobi Varieties of Trigonal Curves and Nonlinear Differential Equations,” Funkts. Anal. Prilozh. 34(3), 1–16 (2000) [Funct. Anal. Appl. 34, 159–171 (2000)].

    Google Scholar 

  13. V. M. Buchstaber and D. V. Leikin, “The Manifold of Solutions of the Equation [\( \frac{{\partial ^2 }} {{\partial u_1 \partial u_2 }} \) − 6 1, 2(u 1, u 2) + E]ψ = 0,” Usp. Mat. Nauk 56(6), 141–142 (2001) [Russ. Math. Surv. 56, 1155–1157 (2001)].

    Google Scholar 

  14. V. M. Buchstaber, J. C. Eilbeck, V. Z. Enolskii, D. V. Leykin, and M. Salerno, “Multidimensional Schrödinger Equations with Abelian Potentials,” J. Math. Phys. 43(6), 2858–2881 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  15. V. M. Buchstaber and D. V. Leykin, “Polynomial Lie Algebras,” Funkts. Anal. Prilozh. 36(4), 18–34 (2002) [Funct. Anal. Appl. 36, 267–280 (2002)].

    Google Scholar 

  16. V. M. Buchstaber, D. V. Leykin, and M. V. Pavlov, “Egorov Hydrodynamic Chains, the Chazy Equation and SL(2, ℂ),” Funkts. Anal. Prilozh. 37(4), 13–26 (2003) [Funct. Anal. Appl. 37, 251–262 (2003)].

    Google Scholar 

  17. V. M. Buchstaber and S. Yu. Shorina, “w-Function of the KdV Hierarchy,” in Geometry, Topology, and Mathematical Physics: S.P. Novikov’s Seminar 2002–2003, Ed. by V. M. Buchstaber and I. M. Krichever (Am. Math. Soc., Providence, RI, 2004), AMS Transl., Ser. 2, 212, pp. 41–46.

    Google Scholar 

  18. V. M. Buchstaber and D. V. Leykin, “Heat Equations in a Nonholonomic Frame,” Funkts. Anal. Prilozh. 38(2), 12–27 (2004) [Funct. Anal. Appl. 38, 88–101 (2004)].

    Google Scholar 

  19. V. M. Buchstaber and D. V. Leykin, “Addition Laws on Jacobian Varieties of Plane Algebraic Curves,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 251, 54–126 (2005) [Proc. Steklov Inst. Math. 251, 49–120 (2005)].

    Google Scholar 

  20. V. M. Buchstaber, “Abelian Functions and Singularity Theory,” in Analysis and Singularities: Abstr. Int. Conf. Dedicated to the 70th Anniversary of V.I. Arnold (Steklov Math. Inst., Moscow, 2007), pp. 117–118; see also http://arnold-70.mi.ras.ru/video_e.html

    Google Scholar 

  21. V. M. Buchstaber and D. V. Leykin, “Solution of the Problem of Differentiation of Abelian Functions over Parameters for Families of (n, s)-Curves,” Funkts. Anal. Prilozh. 42(4), 24–36 (2008) [Funct. Anal. Appl. 42, 268–278 (2008)].

    Google Scholar 

  22. P. A. Clarkson and P. J. Olver, “Symmetry and the Chazy Equation,” J. Diff. Eqns. 124, 225–246 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  23. B. A. Dubrovin and S. P. Novikov, “A Periodicity Problem for the Korteweg-de Vries and Sturm-Liouville Equations. Their Connection with Algebraic Geometry,” Dokl. Akad. Nauk SSSR 219(3), 531–534 (1974) [Sov. Math., Dokl. 15, 1597–1601 (1974)].

    MathSciNet  Google Scholar 

  24. B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, “Non-linear Equations of Korteweg-de Vries Type, Finite-Zone Linear Operators, and Abelian Varieties,” Usp. Mat. Nauk 31(1), 55–136 (1976) [Russ. Math. Surv. 31 (1), 59–146 (1976)].

    MATH  MathSciNet  Google Scholar 

  25. B. A. Dubrovin, “Theta Functions and Non-linear Equations,” Usp. Mat. Nauk 36(2), 11–80 (1981) [Russ. Math. Surv. 36 (2), 11–92 (1981)].

    MathSciNet  Google Scholar 

  26. B. A. Dubrovin, I. M. Krichever, and S. P. Novikov, “Integrable Systems. I,” in Dynamical Systems-4 (VINITI, Moscow, 1985), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 4, pp. 179–285; Engl. transl. in Dynamical Systems IV (Springer, Berlin, 1990), Encycl. Math. Sci. 4, pp. 173–280.

    Google Scholar 

  27. B. A. Dubrovin, “Geometry of 2D Topological Field Theories,” in Integrable Systems and Quantum Groups (Springer, Berlin, 1996), Lect. Notes Math. 1620, pp. 120–348.

    Chapter  Google Scholar 

  28. J. C. Eilbeck, V. Z. Enolskii, and D. V. Leykin, “On the Kleinian Construction of Abelian Functions of Canonical Algebraic Curves,” in SIDE III: Symmetries and Integrability of Difference Equations: Proc. Conf., Sabaudia, Italy, 1998 (Am. Math. Soc., Providence, RI, 2000), CRM Proc. Lect. Notes 25, pp. 121–138.

    Google Scholar 

  29. J. C. Eilbeck, V. Z. Enolskii, and E. Previato, “On a Generalized Frobenius-Stickelberger Addition Formula,” Lett. Math. Phys. 63, 5–17 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  30. J. C. Eilbeck, V. Z. Enolski, S. Matsutani, Y. Ônishi, and E. Previato, “Abelian Functions for Trigonal Curves of Genus Three,” Int. Math. Res. Not., article ID rnm140 (2007); arXiv:math.AG/0610019.

  31. V. Enolskii, S. Matsutani, and Y. Ônishi, “The Addition Law Attached to a Stratification of a Hyperelliptic Jacobian Variety,” Tokyo J. Math. 31(1), 27–38 (2008); arXiv:math.AG/0508366.

    Article  MATH  MathSciNet  Google Scholar 

  32. A. R. Its and V. B. Matveev, “Schrödinger Operators with Finite-Gap Spectrum and N-Soliton Solutions of the Korteweg-de Vries Equation,” Teor. Mat. Fiz. 23(1), 51–68 (1975) [Theor. Math. Phys. 23, 343–355 (1975)].

    MathSciNet  Google Scholar 

  33. I. M. Krichever, “Integration of Nonlinear Equations by the Methods of Algebraic Geometry,” Funkts. Anal. Prilozh. 11(1), 15–31 (1977) [Funct. Anal. Appl. 11, 12–26 (1977)].

    MATH  Google Scholar 

  34. A. Nakayashiki, “On Algebraic Expressions of Sigma Functions for (n, s) Curves,” arXiv: 0803.2083.

  35. A. Nakayashiki, “Sigma Function as a Tau Function,” arXiv: 0904.0846.

  36. S. P. Novikov, “The Periodic Problem for the Korteweg-de Vries Equation,” Funkts. Anal. Prilozh. 8(3), 54–66 (1974) [Funct. Anal. Appl. 8, 236–246 (1974)].

    Google Scholar 

  37. Y. Ônishi, “Determinant Expressions for Hyperelliptic Functions (with an appendix by S. Matsutani),” Proc. Edinb. Math. Soc. 48(3), 705–742 (2005); math.NT/0105189.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Bunkova.

Additional information

Original Russian Text © E.Yu. Bunkova, V.M. Buchstaber, 2009, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2009, Vol. 266, pp. 5–32.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunkova, E.Y., Buchstaber, V.M. Heat equations and families of two-dimensional sigma functions. Proc. Steklov Inst. Math. 266, 1–28 (2009). https://doi.org/10.1134/S0081543809030018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543809030018

Keywords

Navigation