Skip to main content
Log in

On the relationship between cyclic and hierarchical three-species predator-prey systems and the two-species Lotka-Volterra model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Stochastic spatial predator-prey competition models represent paradigmatic systems to understand the emergence of biodiversity and the stability of ecosystems. We aim to clarify the relationship and connections between interacting three-species models and the classic two-species Lotka-Volterra (LV) model that entails predator-prey coexistence with long-lived population oscillations. To this end, we utilize mean-field theory and Monte Carlo simulations on two-dimensional square lattices to explore the temporal evolution characteristics of two different interacting three-species predator-prey systems, namely: (1) a cyclic rock-paper-scissors (RPS) model with conserved total particle number but strongly asymmetric reaction rates that lets the system evolve towards one “corner” of configuration space; (2) a hierarchical “food chain” where an additional intermediate species is inserted between the predator and prey in the LV model. For the asymmetric cyclic model variant (1), we demonstrate that the evolutionary properties of both minority species in the (quasi-)steady state of this stochastic spatial three-species “corner” RPS model are well approximated by the two-species LV system, with its emerging characteristic features of localized population clustering, persistent oscillatory dynamics, correlated spatio-temporal patterns, and fitness enhancement through quenched spatial disorder in the predation rates. In contrast, we could not identify any regime where the hierarchical three-species model (2) would reduce to the two-species LV system. In the presence of pair exchange processes, the system remains essentially well-mixed, and we generally find the Monte Carlo simulation results for the spatially extended hierarchical model (2) to be consistent with the predictions from the corresponding mean-field rate equations. If spreading occurs only through nearest-neighbor hopping, small population clusters emerge; yet the requirement of an intermediate species cluster obviously disrupts spatio-temporal correlations between predator and prey, and correspondingly eliminates many of the intriguing fluctuation phenomena that characterize the stochastic spatial LV system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Smith, Evolution and the Theory of Games (Cambridge University Press, Cambridge, UK, 1982)

  2. J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge University Press, Cambridge, UK, 1998)

  3. M.A. Nowak, Evolutionary Dynamics (Belknap Press, Cambridge, USA, 2006)

  4. R.M. May, W.J. Leonard, SIAM J. Appl. Math. 29, 243 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. R.M. May, Stability and Complexity in Model Ecosystems (Cambridge University Press, Cambridge, UK, 1974)

  6. J.M. Smith, Models in Ecology (Cambridge University Press, Cambridge, UK, 1974)

  7. R.E. Michod, Darwinian Dynamics (Princeton University Press, Princeton, USA, 2000)

  8. R.V. Sole, J. Basecompte, Self-Organization in Complex Ecosystems (Princeton University Press, Princeton, USA, 2006)

  9. D. Neal, Introduction to Population Biology (Cambridge University Press, Cambridge, UK, 2004)

  10. A.J. Lotka, Proc. Natl. Acad. Sci. USA 6, 410 (1920)

    Article  ADS  Google Scholar 

  11. A.J. Lotka, J. Amer. Chem. Soc. 42, 1595 (1920)

    Article  Google Scholar 

  12. V. Volterra, Mem. Accad. Lincei 2, 31 (1926)

    Google Scholar 

  13. V. Volterra, Lecons sur la théorie mathématique de la lutte pour la vie (Gauthiers-Villars, Paris, 1931)

  14. R. Monetti, A.F. Rozenfeld, E.V. Albano, Physica A 283, 52 (2000)

    Article  ADS  Google Scholar 

  15. E. Bettelheim, O.A. Nadav, N.M. Shnerb, Physica E 9, 600 (2001)

    Article  ADS  Google Scholar 

  16. M. Droz, A. Pekalski, Phys. Rev. E 63, 051909 (2001)

    Article  ADS  Google Scholar 

  17. T. Antal, M. Droz, Phys. Rev. E 63, 056119 (2001)

    Article  ADS  Google Scholar 

  18. M. Kowalik, A. Lipowski, A.L. Ferreira, Phys. Rev. E 66, 066107 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  19. A.J. McKane, T.J. Newman, Phys. Rev. Lett. 94, 218102 (2005)

    Article  ADS  Google Scholar 

  20. M.J. Washenberger, M. Mobilia, U.C. Täuber, J. Phys.: Condens. Matter 19, 065139 (2007)

    Article  ADS  Google Scholar 

  21. M. Mobilia, I.T. Georgiev, U.C. Täuber, J. Stat. Phys. 128, 447 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  23. S. Venkat, M. Pleimling, Phys. Rev. E 81, 021917 (2010)

    Article  ADS  Google Scholar 

  24. L. Frachebourg, P.L. Krapivsky, E. Ben-Naim, Phys. Rev. E 54, 6186 (1996)

    Article  ADS  Google Scholar 

  25. B. Sinervo, C.M. Lively, Nature 380, 240 (1996)

    Article  ADS  Google Scholar 

  26. K.R. Zamudio, B. Sinervo, Proc. Natl. Acad. Sci. USA 97, 14427 (2000)

    Article  ADS  Google Scholar 

  27. B. Kerr, M.A. Riley, M.W. Feldman, B.J.M. Bohannan, Nature 418, 171 (2002)

    Article  ADS  Google Scholar 

  28. T. Reichenbach, M. Mobilia, E. Frey, Nature 448, 1046 (2007)

    Article  ADS  Google Scholar 

  29. T. Reichenbach, M. Mobilia, E. Frey, Phys. Rev. Lett. 99, 238105 (2007)

    Article  ADS  Google Scholar 

  30. T. Reichenbach, M. Mobilia, E. Frey, J. Theor. Biol. 254, 368 (2008)

    Article  Google Scholar 

  31. J.D. Murray, Mathematical Biology (Springer, New York, USA, 2002), Vols. I, II

  32. U. Dobramysl, U.C. Täuber, Phys. Rev. Lett. 101, 258102 (2008)

    Article  ADS  Google Scholar 

  33. A. Lipowski, D. Lipowska, Physica A 276, 456 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  34. A.F. Rozenfeld, E.V. Albano, Physica A 266, 322 (1999)

    Article  Google Scholar 

  35. J.E. Satulovsky, T. Tomé, Phys. Rev. E 49, 5073 (1994)

    Article  ADS  Google Scholar 

  36. N. Boccara, O. Roblin, M. Roger, Phys. Rev. E 50, 4531 (1994)

    Article  ADS  Google Scholar 

  37. A. Lipowski, Phys. Rev. E 60, 5179 (1999)

    Article  ADS  Google Scholar 

  38. D. Panja, Phys. Rep. 393, 87 (2004)

    Article  Google Scholar 

  39. L. O’Malley, B. Kozma, G. Korniss, Z. Rácz, T. Caraco, Phys. Rev. E 74, 041116 (2006)

    Article  ADS  Google Scholar 

  40. S.R. Dunbar, J. Math. Biol. 17, 11 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Sherratt, B.T. Eagen, M.A. Lewis, Philos. Trans. R. Soc. Lond. B 352, 21 (1997)

    Article  ADS  Google Scholar 

  42. M.A.M. de Aguiar, E.M. Rauch, Y. Bar-Yam, J. Stat. Phys. 114, 1417 (2004)

    Article  ADS  MATH  Google Scholar 

  43. A. Provata, G. Nicolis, F. Baras, J. Chem. Phys. 110, 8361 (1999)

    Article  ADS  Google Scholar 

  44. M. Mobilia, I.T. Georgiev, U.C. Täuber, Phys. Rev. E 73, 040903(R) (2006)

    Article  ADS  Google Scholar 

  45. T. Reichenbach, M. Mobilia, E. Frey, Banach Center Publications 80, 259 (2008)

    Article  MathSciNet  Google Scholar 

  46. T. Reichenbach, M. Mobilia, E. Frey, Phys. Rev. E 74, 051907 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  47. M. Berr, T. Reichenbach, M. Schottenloer, E. Frey, Phys. Rev. Lett. 102, 048102 (2009)

    Article  ADS  Google Scholar 

  48. K.I. Tainaka, Phys. Rev. E 50, 3401 (1994)

    Article  ADS  Google Scholar 

  49. G. Szabó, A. Szolnoki, Phys. Rev. E 65, 036115 (2002)

    Article  ADS  Google Scholar 

  50. M. Perc, A. Szolnoki, G. Szabó, Phys. Rev. E 75, 052102 (2007)

    Article  ADS  Google Scholar 

  51. G.A. Tsekouras, A. Provata, Phys. Rev. E 65, 016204 (2001)

    Article  ADS  Google Scholar 

  52. Q. He, M. Mobilia, U.C. Täuber, Eur. Phys. J. B 82, 97 (2011)

    Article  ADS  Google Scholar 

  53. M. Frean, E.R. Abraham, Proc. R. Soc. Lond. B 268, 1323 (2001)

    Article  Google Scholar 

  54. Q. He, M. Mobilia, U.C. Täuber, Phys. Rev. E 82, 051909 (2010)

    Article  ADS  Google Scholar 

  55. M. Peltomäki, M. Alava, Phys. Rev. E 78, 031906 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  56. R.K.P. Zia, e-print arXiv:1101.0018 (2011)

  57. U.C. Täuber, J. Phys. Conf. Ser. 319, 012019 (2011)

    Article  ADS  Google Scholar 

  58. C.H. Durney, S.O. Case, M. Pleimling, R.K.P. Zia, Phys. Rev. E 83, 051108 (2011)

    Article  ADS  Google Scholar 

  59. A. Dobrinevski, E. Frey, e-print arXiv:1001.5235 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. C. Täuber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Täuber, U.C. & Zia, R.K.P. On the relationship between cyclic and hierarchical three-species predator-prey systems and the two-species Lotka-Volterra model. Eur. Phys. J. B 85, 141 (2012). https://doi.org/10.1140/epjb/e2012-20918-4

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20918-4

Keywords

Navigation