skip to main content
10.1145/1007352.1007355acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article

Expander flows, geometric embeddings and graph partitioning

Published:13 June 2004Publication History

ABSTRACT

We give a O(√log n)-approximation algorithm for sparsest cut, balanced separator, and graph conductance problems. This improves the O(log n)-approximation of Leighton and Rao (1988). We use a well-known semidefinite relaxation with triangle inequality constraints. Central to our analysis is a geometric theorem about projections of point sets in Rd, whose proof makes essential use of a phenomenon called measure concentration. We also describe an interesting and natural "certificate" for a graph's expansion, by embedding an n-node expander in it with appropriate dilation and congestion. We call this an expander flow.

References

  1. F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optimization, 5:13--51, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  2. N. Alon. Eigenvalues and expanders. Combinatorica 6:83--96, 1986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. Alon and V. Milman. λ1, isoperimetric inequalities for graphs and superconcentrators. J. Combin. Theory B 38:73--88, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  4. Y. Aumann and Y. Rabani. An O(log k) approximate min-cut max-flow theorem and approximation algorithms. SIAM J. Comp Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. K. Ball. An elementary introduction to modern convex geometry, in Flavors of Geometry, S. Levy (ed. ), Cambridge University Press, 1997.Google ScholarGoogle Scholar
  6. M. Blum, R. Karp, O. Vornberger, C. Papadimitriou, M. Yannakakis. The complexity of testing whether a graph is a superconcentrator. Inf. Proc. Letters 13:164--167, 1981.Google ScholarGoogle ScholarCross RefCross Ref
  7. J. Bourgain. On Lipschitz embeddings of finite metric spaces in Hilbert space. Israel J. Mathematics 52:46--52, 1985.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian, in Problem in Analysis, 195-199, Princeton Univ. Press, (1970),Google ScholarGoogle Scholar
  9. F. Chen, L. Lovasz and I. Pak. Lifting Markov Chains to Speed up Mixing. Proc. ACM STOC, 1999, pp 275--281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. F. Chung. Spectral graph theory. CBMS Regional Conference Series in Mathematics, 92, American Mathematical Society, 1997.Google ScholarGoogle Scholar
  11. L. Danzer and B. Grunbaum. On two problems of P. Erdos and V. L. Klee concerning convex bodies (in German). Math. Zeitschrift 79:95--99, 1962.Google ScholarGoogle ScholarCross RefCross Ref
  12. P. Diaconis and L. Saloff-Coste. Comparison theorems for reversible Markov chains. Annals of Applied Probability, 3:696--730, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  13. U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum bisection. In IEEE FOCS 2001 pp 105--115. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. N. Garg and J. Koneman. Faster and Simpler Algorithms for Multicommodity Flow and other Fractional Packing Problems. In IEEE FOCS 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. N. Garg and V. V. Vazirani and M. Yannakakis. Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Computing, 25(2):235--251, 1996. Prelim. version in Proc. ACM STOC'93. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. M. X. Goemans. Semidefinite programming in combinatorial optimization. Math. Programming, 79:143--161, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. M. X. Goemans. unpublished note.Google ScholarGoogle Scholar
  18. M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. JACM, 42(6):1115--1145, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. M. Grotschel, L. Lovasz, and A. Schrijver. Geometric algorithms and combinatorial optimization. Springer-Verlag, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  20. H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX 3SAT? Proc. of 38th IEEE FOCS (1997), 406-415. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite programming. JACM, 45(2):246--265, 1998. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. M. Jerrum and A. Sinclair. Approximating the permanent. SIAM J. Comput., 18(6):1149-1178, 1989. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. JACM 46 1999. Prelim. version in ACM STOC 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorithmic applications. Combinatorica 15:215--246, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  25. L. Lovasz. On the Shannon capacity of a graph. IEEE Trans. on Info. Theory IT-25:1--7, 1979.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. A. Lubotzky, R. Philips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8:261--277, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  27. J. Matousek. Lectures on Discrete Geometry. Springer Verlag, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Y. Nesterov and A. Nemirovskii. Interior point polynomial methods in convex programming. SIAM, Philadelphia, PA 1994.Google ScholarGoogle Scholar
  29. S. Plotkin and D. B. Shmoys and E. Tardos. Fast approximation algorithms for fractional packing and covering problems. Math. Operations Res. 20:257--301, 1995. Prelim. version IEEE Foundations of Computer Science, 1991, 495--504. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. G. Schechtman. Concentration, results and applications. Handbook of the Geometry of Banach Spaces, volume 2, W. B. Johnson and J. Lindenstrauss (eds. ), North Holland, 2003. Draft version available from Schechtman's website.Google ScholarGoogle ScholarCross RefCross Ref
  31. F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. Journal of the ACM, 37:318--334, 1990. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. D. S. Shmoys. Cut problems and their application to divide and conquer. Approximation Algorithms for NP-hard problems, D. S. Hochbaum (ed. ), PWS Publishing, 1995. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity flow. Combinatorics, Prob., Comput. 1:351--370, 1992.Google ScholarGoogle Scholar
  34. V. Vazirani. Approximation algorithms. Springer Verlag, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. K. Zatloukal. Personal communication, November 2003.Google ScholarGoogle Scholar

Index Terms

  1. Expander flows, geometric embeddings and graph partitioning

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      STOC '04: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing
      June 2004
      660 pages
      ISBN:1581138520
      DOI:10.1145/1007352

      Copyright © 2004 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 13 June 2004

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • Article

      Acceptance Rates

      Overall Acceptance Rate1,469of4,586submissions,32%

      Upcoming Conference

      STOC '24
      56th Annual ACM Symposium on Theory of Computing (STOC 2024)
      June 24 - 28, 2024
      Vancouver , BC , Canada

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader