skip to main content
article

Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time

Authors Info & Claims
Published:01 May 2004Publication History
Skip Abstract Section

Abstract

We introduce the smoothed analysis of algorithms, which continuously interpolates between the worst-case and average-case analyses of algorithms. In smoothed analysis, we measure the maximum over inputs of the expected performance of an algorithm under small random perturbations of that input. We measure this performance in terms of both the input size and the magnitude of the perturbations. We show that the simplex algorithm has smoothed complexity polynomial in the input size and the standard deviation of Gaussian perturbations.

References

  1. Abramowitz, M., and Stegun, I. A., Eds. 1970. Handbook of Mathematical Functions, 9 ed. Applied Mathematics Series, vol. 55. National Bureau of Standards. Google ScholarGoogle Scholar
  2. Adler, I. 1983. The expected number of pivots needed to solve parametric linear programs and the efficiency of the self-dual simplex method. Tech. Rep., University of California at Berkeley. May.Google ScholarGoogle Scholar
  3. Adler, I., Karp, R. M., and Shamir, R. 1987. A simplex variant solving an m x d linear program in O(min(m2,d2)) expected number of pivot steps. J. Complex. 3, 372--387. Google ScholarGoogle Scholar
  4. Adler, I., and Megiddo, N. 1985. A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension. J. ACM 32, 4 (Oct.), 871--895. Google ScholarGoogle Scholar
  5. Amenta, N., and Ziegler, G. 1999. Deformed products and maximal shadows of polytopes. In Advances in Discrete and Computational Geometry, B. Chazelle, J. Goodman, and R. Pollack, Eds. Number 223 in Contemporary Mathematics. American Mathematics Society, 57--90.Google ScholarGoogle Scholar
  6. Avis, D., and Chvátal, V. 1978. Notes on Bland's pivoting rule. In Polyhedral Combinatorics. Math. Programming Study, vol. 8. 24--34.Google ScholarGoogle Scholar
  7. Blaschke, W. 1935. Integralgeometrie 2: Zu ergebnissen von M. W. Crofton. Bull. Math. Soc. Roumaine Sci. 37, 3--11.Google ScholarGoogle Scholar
  8. Blum, A., and Spencer, J. 1995. Coloring random and semi-random k-colorable graphs. J. Algorithms 19, 2, 204--234. Google ScholarGoogle Scholar
  9. Borgwardt, K. H. 1977. Untersuchungen zur asymptotik der mittleren schrittzahl von simplexverfahren in der linearen optimierung. Ph.D. dissertation, Universitat Kaiserslautern.Google ScholarGoogle Scholar
  10. Borgwardt, K. H. 1980. The Simplex Method: a probabilistic analysis. Number 1 in Algorithms and Combinatorics. Springer-Verlag, New York. Google ScholarGoogle Scholar
  11. Chan, T. F., and Hansen, P. C. 1992. Some applications of the rank revealing QR factorization. SIAM J. Sci. Stat. Comput. 13, 3 (May), 727--741. Google ScholarGoogle Scholar
  12. Dantzig, G. B. 1951. Maximization of linear function of variables subject to linear inequalities. In Activity Analysis of Production and Allocation, T. C. Koopmans, Ed. 339--347.Google ScholarGoogle Scholar
  13. Edelman, A. 1992. Eigenvalue roulette and random test matrices. In Linear Algebra for Large Scale and Real-Time Applications, M. S. Moonen, G. H. Golub, and B. L. R. D. Moor, Eds. NATO ASI Series. 365--368.Google ScholarGoogle Scholar
  14. Efron, B. 1965. The convex hull of a random set of points. Biometrika 52, 3/4, 331--343.Google ScholarGoogle Scholar
  15. Feige, U., and Kilian, J. 1998. Heuristics for finding large independent sets, with applications to coloring semi-random graphs. In 39th Annual Symposium on Foundations of Computer Science: Proceedings (Palo Alto, Calif. Nov. 8--11). IEEE Computer Society Press, Los Alamitos, Calif. Google ScholarGoogle Scholar
  16. Feige, U., and Krauthgamer, R. 1998. Improved performance guarantees for bandwidth minimization heuristics. http://www.cs.berkeley.edu/∼robi/papers/FK-BandwidthHenristics-manuscript98.ps.gz.Google ScholarGoogle Scholar
  17. Feller, W. 1968. An Introduction to Probability Theory and Its Applications. Vol. 1. Wiley, New York.Google ScholarGoogle Scholar
  18. Feller, W. 1971. An Introduction to Probability Theory and Its Applications. Vol. 2. Wiley, New York.Google ScholarGoogle Scholar
  19. Goldfarb, D. 1983. Worst case complexity of the shadow vertex simplex algorithm. Tech. Rep. Columbia Univ., New York.Google ScholarGoogle Scholar
  20. Goldfarb, D., and Sit, W. T. 1979. Worst case behaviour of the steepest edge simplex method. Disc. Appl. Math 1, 277--285.Google ScholarGoogle Scholar
  21. Haimovich, M. 1983. The simplex algorithm is very good!: On the expected number of pivot steps and related properties of random linear programs. Tech. Rep. Columbia Univ., New York.Google ScholarGoogle Scholar
  22. Jeroslow, R. G. 1973. The simplex algorithm with the pivot rule of maximizing improvement criterion. Disc. Math. 4, 367--377.Google ScholarGoogle Scholar
  23. Kalai, G. 1992. A subexponential randomized simplex algorithm. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing (Victoria, B.C., Canada). ACM, New York, 475--482. Google ScholarGoogle Scholar
  24. Kalai, G., and Kleitman, D. J. 1992. A quasi-polynomial bound for the diameter of graphs of polyhedra. Bull. Amer. Math. Soc. 26, 315--316.Google ScholarGoogle Scholar
  25. Karmarkar, N. 1984. A new polynomial time algorithm for linear programming. Combinatorica 4, 373--395. Google ScholarGoogle Scholar
  26. Khachiyan, L. G. 1979. A polynomial algorithm in linear programming. Doklady Akademia Nauk SSSR, 1093--1096.Google ScholarGoogle Scholar
  27. Klee, V., and Minty, G. J. 1972. How good is the simplex algorithm? In Inequalities---III, Shisha, O., Ed. Academic Press, Orlando, Fla., 159--175.Google ScholarGoogle Scholar
  28. Matoušek, J., Sharir, M., and Welzl, E. 1996. A subexponential bound for linear programming. Algorithmica 16, 4/5 (Oct./Nov.), 498--516.Google ScholarGoogle Scholar
  29. Megiddo, N. 1986. Improved asymptotic analysis of the average number of steps performed by the self-dual simplex algorithm. Math. Prog. 35, 2, 140--172. Google ScholarGoogle Scholar
  30. Miles, R. E. 1971. Isotropic random simplices. Adv. Appl. Prob. 3, 353--382.Google ScholarGoogle Scholar
  31. Murty, K. G. 1980. Computational complexity of parametric linear programming. Math. Prog. 19, 213--219.Google ScholarGoogle Scholar
  32. Renegar, J. 1994. Some perturbation theory for linear programming. Math. Prog. Ser. A. 65, 1, 73--91. Google ScholarGoogle Scholar
  33. Renegar, J. 1995a. Incorporating condition measures into the complexity theory of linear programming. SIAM J. Optim. 5, 3, 506--524.Google ScholarGoogle Scholar
  34. Renegar, J. 1995b. Linear programming, complexity theory and elementary functional analysis. Math. Prog. Ser. A. 70, 3, 279--351. Google ScholarGoogle Scholar
  35. Renyi, A., and Sulanke, R. 1963. Uber die convexe hulle von is zufallig gewahlten punkten, I. Z. Whar. 2, 75--84.Google ScholarGoogle Scholar
  36. Renyi, A., and Sulanke, R. 1964. Uber die convexe hulle von is zufallig gewahlten punkten, II. Z. Whar. 3, 138--148.Google ScholarGoogle Scholar
  37. Santalo, L. A. 1976. Integral Geometry and Geometric Probability. Encyclopedia of Mathematics and its Applications. Addison-Wesley, Reading, Mass.Google ScholarGoogle Scholar
  38. Santha, M., and Vazirani, U. 1986. Generating quasi-random sequences from semi-random sources. J. Comput. System Sciences 33, 75--87. Google ScholarGoogle Scholar
  39. Smale, S. 1982. The problem of the average speed of the simplex method. In Proceedings of the 11th International Symposium on Mathematical Programming. 530--539.Google ScholarGoogle Scholar
  40. Smale, S. 1983. On the average number of steps in the simplex method of linear programming. Math. Prog. 27, 241--262.Google ScholarGoogle Scholar
  41. Todd, M. 1986. Polynomial expected behavior of a pivoting algorithm for linear complementarity and linear programming problems. Math. Prog. 35, 173--192. Google ScholarGoogle Scholar
  42. Todd, M. J. 1991. Probabilistic models for linear programming. Math. Oper. Res. 16, 4, 671--693. Google ScholarGoogle Scholar
  43. Todd, M. J., Tunçel, L., and Ye, Y. 2001. Characterizations, bounds, and probabilistic analysis of two complexity measures for linear programming problems. Math. Program., Ser. A 90, 59--69.Google ScholarGoogle Scholar
  44. Turner, J. S. 1986. On the probable performance of a heuristic for bandwidth minimization. SIAM J. Comput. 15, 2, 561--580. Google ScholarGoogle Scholar
  45. Vavasis, S. A., and Ye, Y. 1996. A primal-dual interior-point method whose running time depends only on the constraint matrix. Math. Program. 74, 79--120. Google ScholarGoogle Scholar

Index Terms

  1. Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader