Open Access
February 2014 Positivity of integrated random walks
Vladislav Vysotsky
Ann. Inst. H. Poincaré Probab. Statist. 50(1): 195-213 (February 2014). DOI: 10.1214/12-AIHP487

Abstract

Take a centered random walk $S_{n}$ and consider the sequence of its partial sums $A_{n}:=\sum_{i=1}^{n}S_{i}$. Suppose $S_{1}$ is in the domain of normal attraction of an $\alpha$-stable law with $1<\alpha\le2$. Assuming that $S_{1}$ is either right-exponential (i.e. $\mathbb{P}(S_{1}>x|S_{1}>0)=\mathrm{e}^{-ax}$ for some $a>0$ and all $x>0$) or right-continuous (skip free), we prove that

\[\mathbb{P}\{A_{1}>0,\dots,A_{N}>0\}\sim C_{\alpha}N^{{1}/{(2\alpha)}-1/2}\]

as $N\to\infty$, where $C_{\alpha}>0$ depends on the distribution of the walk. We also consider a conditional version of this problem and study positivity of integrated discrete bridges.

Soit $S_{n}$ une marche aléatoire centrée, nous considérons la suite de ses sommes partielles $A_{n}:=\sum_{i=1}^{n}S_{i}$. Nous supposons que $S_{1}$ est dans le domaine d’attraction normale d’une loi $\alpha$-stable avec $1<\alpha\le2$. En supposant que $S_{1}$ est soit exponentielle à droite (i.e. $\mathbb{P}(S_{1}>x|S_{1}>0)=\mathrm{e}^{-ax}$), soit continue à droite (i.e. $\mathbb{P}(S_{1}=1|S_{1}>0)=1$), nous prouvons que

\[\mathbb{P}\{A_{1}>0,\dots,A_{N}>0\}\sim C_{\alpha}N^{{1}/{(2\alpha)}-1/2}\]

quand $N\to\infty$, où $C_{\alpha}>0$ dépend de la distribution de la marche. Nous considérons aussi une version conditionnelle de ce problème et nous étudions la positivité de ponts discrets intégrés.

Citation

Download Citation

Vladislav Vysotsky. "Positivity of integrated random walks." Ann. Inst. H. Poincaré Probab. Statist. 50 (1) 195 - 213, February 2014. https://doi.org/10.1214/12-AIHP487

Information

Published: February 2014
First available in Project Euclid: 1 January 2014

zbMATH: 1293.60053
MathSciNet: MR3161528
Digital Object Identifier: 10.1214/12-AIHP487

Subjects:
Primary: 60F99 , 60G50

Keywords: Area of excursion , Area of random walk , Integrated random walk , One-sided exit probability , Persistence , Sparre–Andersen theorem , Stable excursion , Unilateral small deviations

Rights: Copyright © 2014 Institut Henri Poincaré

Vol.50 • No. 1 • February 2014
Back to Top