Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Inequalities associated with regular and singular problems in the calculus of variations
HTML articles powered by AMS MathViewer

by J. S. Bradley and W. N. Everitt PDF
Trans. Amer. Math. Soc. 182 (1973), 303-321 Request permission

Abstract:

An inequality of the form $\smallint _a^b[p|f’{|^2} + q|f{|^2}] \geq {\mu _0}\smallint _a^b|f{|^2}\;(f \in D)$ is established, where p and q are real-valued coefficient functions and f is a complex-valued function in a set D so chosen that both sides of the inequality are finite. The interval of integration is of the form $- \infty < a < b \leq \infty$. The inequality is first established for functions in the domain of an operator in the Hilbert function space ${L^2}(a,b)$ that is associated with the differential equation $- (py’)’ + qy = \lambda y$, and the number ${\mu _0}$ in the inequality is the smallest number in the spectrum of this operator. An approximation theorem is given that allows the inequality to be established for the larger set of functions D. An extension of some classical results from the calculus of variations and some spectral theory is then used to give necessary and sufficient conditions for equality and to show that the constant ${\mu _0}$ is best possible. Certain consequences of these conclusions are also discussed.
References
  • L. È. Èl′sgol′c, Calculus of variations, Pergamon Press, Ltd., London-Paris-Frankfurt, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962. MR 0133032
  • Gilbert A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, Chicago, Ill., 1946. MR 0017881
  • John S. Bradley, Adjoint quasi-differential operators of Euler type, Pacific J. Math. 16 (1966), 213–237. MR 200518, DOI 10.2140/pjm.1966.16.213
  • J. Chaudhuri and W. N. Evcritt, On the spectrum of ordinary second-order differential operators, Proc. Roy. Soc. Edinburgh A 68 (1968), 95-119. R. Courant and D. Hilbert, Methoden der Mathematischen Physik. Vol. I, Springer, Berlin, 1931; English transl., Interscience, New York, 1953. MR 16, 426.
  • W. N. Everitt, On the limit-point classification of second-order differential operators, J. London Math. Soc. 41 (1966), 531–534. MR 200519, DOI 10.1112/jlms/s1-41.1.531
  • W. N. Everitt, On an extension to an integro-differential inequality of Hardy, Littlewood and Polya, Proc. Roy. Soc. Edinburgh Sect. A 69 (1972), no. 4, 295–333. MR 387709
  • W. N. Everitt, On the spectrum of a second order linear differential equation with a $p$-integrable coefficient, Applicable Anal. 2 (1972), 143–160. MR 397072, DOI 10.1080/00036817208839034
  • W. N. Everitt, M. Giertz, and J. Weidmann, Some remarks on a separation and limit-point criterion of second-order, ordinary differential expressions, Math. Ann. 200 (1973), 335–346. MR 326047, DOI 10.1007/BF01428264
  • I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Israel Program for Scientific Translations, Jerusalem, 1965; Daniel Davey & Co., Inc., New York, 1966. Translated from the Russian by the IPST staff. MR 0190800
  • G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, New York, 1934.
  • Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
  • L. Lichtenstein, Zur Variationrechung, Kgl. Ges. Wiss. Nach. Math.-Phys. Kl. 2 (1919), 161-192. M. A. Naĭmark, Linear differential operators. Part II, GITTL, Moscow, 1954; English transl., Ungar, New York, 1968. MR 16, 702; MR 41 #7485.
  • C. R. Putnam, An application of spectral theory to a singular calculus of variations problem, Amer. J. Math. 70 (1948), 780–803. MR 30133, DOI 10.2307/2372212
  • William T. Reid, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0273082
  • E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations. Part I, 2nd ed., Clarendon Press, Oxford, 1962. MR 0176151
  • Robert Weinstock, Calculus of variations with applications to physics and engineering, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0052702
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 34B25, 49B10
  • Retrieve articles in all journals with MSC: 34B25, 49B10
Additional Information
  • © Copyright 1973 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 182 (1973), 303-321
  • MSC: Primary 34B25; Secondary 49B10
  • DOI: https://doi.org/10.1090/S0002-9947-1973-0330606-8
  • MathSciNet review: 0330606