Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Twisted Lubin-Tate formal group laws, ramified Witt vectors and (ramified) Artin-Hasse exponentials
HTML articles powered by AMS MathViewer

by Michiel Hazewinkel PDF
Trans. Amer. Math. Soc. 259 (1980), 47-63 Request permission

Abstract:

For any ring $R$ let $\Lambda (R)$ denote the multiplicative group of power series of the form $1 + {a_1}t + \cdots$ with coefficients in $R$. The Artin-Hasse exponential mappings are homomorphisms $W_{p, \infty } (k) \to \Lambda ({W_{p, \infty }}(k))$, which satisfy certain additional properties. Somewhat reformulated, the Artin-Hasse exponentials turn out to be special cases of a functorial ring homomorphism $E: {W_{p, \infty }}( - ) \to {W_{p,\infty }}({W_{p,\infty }}( - ))$, where ${W_{p,\infty }}$ is the functor of infinite-length Witt vectors associated to the prime $p$. In this paper we present ramified versions of both ${W_{p,\infty }}( - )$ and $E$, with ${W_{p,\infty }}( - )$ replaced by a functor $W_{q,\infty }^F( - )$, which is essentially the functor of $q$-typical curves in a (twisted) Lubin-Tate formal group law over $A$, where $A$ is a discrete valuation ring that admits a Frobenius-like endomorphism $\sigma$ (we require $\sigma (a) \equiv {a^q} \bmod \mathfrak {m}$ for all $a \in A$, where $\mathfrak {m}$ is the maximal idea of $A$). These ramified-Witt-vector functors $W_{q,\infty }^F( - )$ do indeed have the property that, if $k = A/\mathfrak {m}$ is perfect, $A$ is complete, and $l/k$ is a finite extension of $k$, then $W_{q,\infty }^F(l)$ is the ring of integers of the unique unramified extension $L/K$ covering $l/k$.
References
    E. Artin and H. Hasse, Die beide Ergänzungssätze zum Reciprozitätsgesetz der ${l^n}$-ten Potenzreste im Körper der ${l^n}$-ten Einheitswürzeln, Abh. Math. Sem. Hamburg 6 (1928), 146-162.
  • Pierre Cartier, Groupes formels associés aux anneaux de Witt généralisés, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A49–A52 (French). MR 218361
  • —, Modules associés à un groupe formel commutatif. Courbes typiques, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A129-A132. —, Relèvement des groupe formels commutatifs, Sem. Bourbaki (1968/1969), exposé 359, Lecture Notes in Math., no. 179, Springer-Verlag, Berlin and New York, 1971. —, Séminaire sur les groupes formels, Inst. Hautes Etudes Sci., 1972 (unpublished notes).
  • Jean Dieudonné, On the Artin-Hasse exponential series, Proc. Amer. Math. Soc. 8 (1957), 210–214. MR 87034, DOI 10.1090/S0002-9939-1957-0087034-9
  • E. J. Ditters, Formale Gruppen, die Vermutungen von Atkin-Swinnerton Dyer und verzweigte Witt-vektoren, Lecture Notes, Göttingen, 1975.
  • V. G. Drinfel′d, Coverings of $p$-adic symmetric domains, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 29–40 (Russian). MR 0422290
  • Michiel Hazewinkel, Une théorie de Cartier-Dieudonné pour les $A$-modules formels, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 12, A655–A657 (French, with English summary). MR 427327
  • Michiel Hazewinkel, “Tapis de Cartier” pour les $A$-modules formels, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), no. 13, A739–A740. MR 439852
  • Michiel Hazewinkel, Formal groups and applications, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506881
  • Jonathan Lubin and John Tate, Formal complex multiplication in local fields, Ann. of Math. (2) 81 (1965), 380–387. MR 172878, DOI 10.2307/1970622
  • G. Whaples, Generalized local class field theory. III. Second form of existence theorem. Structure of analytic groups, Duke Math. J. 21 (1954), 575–581. MR 73645
  • E. Witt, Zyklische Körper und Algebren der Characteristik p vom Grad ${p^m}$, J. Reine Angew. Math. 176 (1937), 126-140.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 14L05, 13K05
  • Retrieve articles in all journals with MSC: 14L05, 13K05
Additional Information
  • © Copyright 1980 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 259 (1980), 47-63
  • MSC: Primary 14L05; Secondary 13K05
  • DOI: https://doi.org/10.1090/S0002-9947-1980-0561822-1
  • MathSciNet review: 561822