Skip to main content
Log in

Schur and Schubert polynomials as Thom polynomials—cohomology of moduli spaces

  • Published:
Central European Journal of Mathematics

Abstract

The theory of Schur and Schubert polynomials is revisited in this paper from the point of view of generalized Thom polynomials. When we apply a general method to compute Thom polynomials for this case we obtain a new definition for (double versions of) Schur and Schubert polynomials: they will be solutions of interpolation problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • [AB82] M.F. Atiyah and R. Bott: “The Yang-Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, Vol. 308, (1982), pp. 523–615.

    MathSciNet  Google Scholar 

  • [AVGL91] V.I. Arnold, V.A. Vassiliev, V.V. Goryunov, O.V. Lyashko: “Singularities. Local and global theory”, Enc. Math. Sci. Dynamical Systems VI, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  • [BF99] A. Buch and W. Fulton: “Chern class formulas for quiver varieties”, Inv. Math., Vol. 135, (1999), pp. 665–687.

    Article  MATH  MathSciNet  Google Scholar 

  • [CLL02] W. Chen, B. Li, J.D. Louck: “The flagged double schur function”, J. Algebraic Combin., Vol. 15, (2002), pp. 7–26.

    Article  MATH  MathSciNet  Google Scholar 

  • [FP89] W. Fulton and P. Pragacz: Schubert Varieties and Degeneracy Loci, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

  • [FR02] L. Fehér and R. Rimányi: “Classes of degeneraci loci for quivers—the Thom polynomial point of view”, Duke J. Math., Vol. 114, (2002), pp. 193–213.

    Article  MATH  Google Scholar 

  • [FR03] L. M. Fehér and R. Rimányi: “Calculation of Thom polynomials and other cohomological obstructions for group actions”, to appear in Sao Carlos Singularities 2002, Cont. Math. AMS, 2003.

  • [FRN03] L. Fehér, A. Némethi, R. Rimányi: Coincident root loci of binary forms, http://www.math.ohio-state.edu/∼rimanyi/cikkek, 2003.

  • [Ful92] W. Fulton: “Flags, Schubert polynomials, degeneracy loci, and determinantal formulas”, Duke Math. J., Vol. 65, (1992), pp. 381–420.

    Article  MATH  MathSciNet  Google Scholar 

  • [Ful98] W. Fulton: Intersection Theory. Springer, Berlin, 1984, 1998.

    Google Scholar 

  • [Kaz95] M. Kazarian: “Characteristic classes of Lagrange and Legendre singularities”, Russian Math. Surv., Vol. 50, (1995), pp. 701–726.

    Article  Google Scholar 

  • [Kaz97] M.É. Kazarian: “Characteristic classes of singularity theory”, In: V.I. Arnold et al., (Eds): The Arnold-Gelfand mathematical seminars: geometry and singularity theory, Birkhauser Boston, Boston MA, 1997, pp. 325–340.

    Google Scholar 

  • [Kaz00] M. Kazarian: “Thom polynomials for Lagrange, Legendre and critical point singularities”, Isaac Newton Institute for Math. Sci., preprint, 2000.

  • [Kir84] F. Kirwan: Cohomology of quotients in symplectic and algebraic geometry. No. 31, in Mathematical Notes, Princeton University Press, Princeton NY, 1984.

    MATH  Google Scholar 

  • [Kir92] F. Kirwan: “The cohomology rings of moduli spaces of bundles over Riemann surfaces”, J. Amer. Math. Soc., Vol. 5, (1992), pp. 853–906.

    Article  MATH  MathSciNet  Google Scholar 

  • [KL74] G. Kempf and D. Laksov: “The determinantal formula of Schubert calculus”, Acta. Math., Vol. 132, (1974), pp. 153–162.

    Article  MATH  MathSciNet  Google Scholar 

  • [Las74] Alain Lascoux: “Puissances extérieures, déterminants et cycles de Schubert”, Bull. Soc. Math. France, Vol. 102, (1974), pp. 161–179.

    MATH  MathSciNet  Google Scholar 

  • [LS82] Lascoux and Schützenberger: “Polynômes de Schubert”, C. R. Acad. Sci. Paris, Vol. 294, (1982), pp. 447–450.

    MATH  Google Scholar 

  • [Mac91] I.G. MacDonald: Notes on Schubert polynomials, LACIM 6, 1991.

  • [Pra88] Piotr Pragacz: “Enumerative geometry of degeneracy loci”, Ann. Sci. École Norm. Sup. (4), Vol. 21, (1988), pp. 413–454.

    MATH  MathSciNet  Google Scholar 

  • [Rim01] R. Rimányi: “Thom polynomials, symmetries and incidences of singularities”, Inv. Math., Vol. 143, (2001), pp. 499–521.

    Article  MATH  Google Scholar 

  • [Sti36] E. Stiefel: “Richtungsfelder und Fernparallelismus in Mannigfaltigkeiten”, Comm. Math. Helv., Vol. 8, (1936), pp. 3–51.

    MathSciNet  Google Scholar 

  • [Szű79] A. Szűcs: “Analogue of the Thom space for mapping with singularity of type ∑1”, Math. Sb. (N. S.), Vol. 108, (1979), pp. 438–456.

    Google Scholar 

  • [Vas88] V.A. Vassiliev: Lagrange and Legendre Characteristic Classes, Gordon and Breach, New York, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Fehér, L.M., Rimányi, R. Schur and Schubert polynomials as Thom polynomials—cohomology of moduli spaces. centr.eur.j.math. 1, 418–434 (2003). https://doi.org/10.2478/BF02475176

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/BF02475176

Keywords

AMS

Navigation