Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 24, 2009

Ordinary reduction of K3 surfaces

  • Fedor Bogomolov EMAIL logo and Yuri Zarhin
From the journal Open Mathematics

Abstract

Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.

[1] Artin M., Supersingular K3 surfaces, Ann. Sci. École Norm. Sup., Sér. 4, 1974, 7, 543–567 10.24033/asens.1279Search in Google Scholar

[2] Artin M., Mazur B., Formal groups arising from algebraic varieties, Ann. Sci. École Norm. Sup., Sér. 4, 1977, 10, 87–131 10.24033/asens.1322Search in Google Scholar

[3] Berthelot P., Ogus A., Notes on crystalline cohomology, Princeton University Press, Princeton, 1978 Search in Google Scholar

[4] Bogomolov F.A., Sur l’algébricité des représentations ℓ-adiques, C. R. Acad. Sci. Paris Sér. A-B, 1980, 290, A701–A703 (in French) Search in Google Scholar

[5] Bogomolov F.A., Points of finite order on abelian varieties, Izv. Akad. Nauk SSSR Ser. Mat., 1980, 44, 782–804 (in Russian), Math. USSR Izv., 1981, 17, 55–72 10.1070/IM1981v017n01ABEH001329Search in Google Scholar

[6] Deligne P., La conjecture de Weil pour les surfaces K3, Invent. Math., 1972, 15, 206–226 (in French) http://dx.doi.org/10.1007/BF0140412610.1007/BF01404126Search in Google Scholar

[7] Deligne P. (rédigé par L. Illusie), Relèvement des surfaces K3 en charactéristique nulle, In: Surfaces Algébriques, Lecture Notes in Math., Springer, 1981, 868, 58–79 (in French) 10.1007/BFb0090646Search in Google Scholar

[8] Faltings G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 1983, 73, 349–366, Erratum, 1984, 75, 381 (in German) http://dx.doi.org/10.1007/BF0138843210.1007/BF01388432Search in Google Scholar

[9] Hindry M., Silverman J.H., Diophantine geometry, An Introduction, Graduate Texts in Mathematics 201, Springer-Verlag, New York, 2000 10.1007/978-1-4612-1210-2Search in Google Scholar

[10] Joshi K., Rajan C.S., Frobenius splitting and ordinarity, Int. Math. Res. Not., 2003, 2, 109–121 http://dx.doi.org/10.1155/S107379280311213510.1155/S1073792803112135Search in Google Scholar

[11] Katz N., Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math., 1970, 39, 175–232 http://dx.doi.org/10.1007/BF0268468810.1007/BF02684688Search in Google Scholar

[12] Katz N., Messing W., Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., 1974, 23, 73–77 http://dx.doi.org/10.1007/BF0140520310.1007/BF01405203Search in Google Scholar

[13] Koch H., Number theory II (Algebraic number theory), Encyclopedia of Mathematical Sciences 62, Springer Verlag, Berlin Heidelberg, 1992 Search in Google Scholar

[14] Mazur B., Frobenius and the Hodge filtration, Bull. Amer. Math. Soc., 1972, 78, 653–667 http://dx.doi.org/10.1090/S0002-9904-1972-12976-810.1090/S0002-9904-1972-12976-8Search in Google Scholar

[15] Mumford D., Abelian varieties, Second Edition, Oxford University Press, London, 1974 Search in Google Scholar

[16] Noot R., Abelian varieties—Galois representation and properties of ordinary reduction, Compositio Math., 1995, 97, 161–171 Search in Google Scholar

[17] Noot R., Abelian varieties with ℓ-adic Galois representation of Mumford’s type, J. Reine Angew. Math., 2000, 519, 155–169 10.1515/crll.2000.010Search in Google Scholar

[18] Nygaard N., The Tate conjecture for ordinary K3 surfaces over finite fields, Invent. Math., 1983, 74, 213–237 http://dx.doi.org/10.1007/BF0139431410.1007/BF01394314Search in Google Scholar

[19] Nygaard N., Ogus A., Tate’s conjecture for K3 surfaces of finite height, Ann. of Math., 1985, 122, 461–507 http://dx.doi.org/10.2307/197132710.2307/1971327Search in Google Scholar

[20] Ogus A., Hodge cycles and crystalline cohomology, In: Lecture Notes in Math., Springer, 1982, 900, 357–414 http://dx.doi.org/10.1007/978-3-540-38955-2_810.1007/978-3-540-38955-2_8Search in Google Scholar

[21] Piatetski-Shapiro I. I., Shafarevich I.R., Arithmetic of K3 surfaces, Trudy Mat. Inst. Steklov, 1973, 132, 44–54 (in Russian), Proc. Steklov. Math. Inst., 1975, 132, 45–57 Search in Google Scholar

[22] Serre J.-P., Représentations ℓ-adiques, In: Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), 177–193, Japan Soc. Promotion Sci., Tokyo, 1977 (in French) Search in Google Scholar

[23] Serre J.-P., Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math., 1981, 54, 323–401 (in French) http://dx.doi.org/10.1007/BF0269869210.1007/BF02698692Search in Google Scholar

[24] Serre J.-P., Abelian ℓ-adic representations and elliptic curves, Second Edition, Addison-Wesley, 1989 Search in Google Scholar

[25] Skorobogatov A.N., Zarhin Yu.G., A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces, J. Algebraic Geom., 2008, 17, 481–502 10.1090/S1056-3911-07-00471-7Search in Google Scholar

[26] Tankeev S.G., On the weights of the ℓ-adic representation and arithmetic of Frobenius eigenvalues, Izv. Ross. Akad. Nauk Ser. Mat., 1999, 63, 185–224 (in Russian), Izv. Math., 1999, 63, 181–218 10.1070/IM1999v063n01ABEH000233Search in Google Scholar

[27] Tate J., Conjectures on algebraic cycles in ℓ-adic cohomology, Motives (Seattle, WA, 1991), 71–83, Proc. Sympos. Pure Math. 55,Part 1, Amer. Math. Soc., Providence, RI, 1994 10.1090/pspum/055.1/1265523Search in Google Scholar

[28] Yu J.-D., Yui N., K3 Surfaces of finite height over finite fields, J. Math. Kyoto Univ., 2008, 48, 499–519 10.1215/kjm/1250271381Search in Google Scholar

[29] Zarhin Yu.G., Hodge groups of K3 surfaces, J. Reine Angew. Math., 1983, 341, 193–220 10.1515/crll.1983.341.193Search in Google Scholar

[30] Zarhin Yu.G., Weights of simple Lie algebras in the cohomology of algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat., 1984, 48, 264–304 (in Russian), Math. USSR Izv., 1985, 24, 245–282 10.1070/IM1985v024n02ABEH001230Search in Google Scholar

[31] Zarhin Yu.G., Transcendental cycles on ordinary K3 surfaces over finite fields, Duke Math. J., 1993, 72, 65–83 http://dx.doi.org/10.1215/S0012-7094-93-07203-110.1215/S0012-7094-93-07203-1Search in Google Scholar

Published Online: 2009-5-24
Published in Print: 2009-6-1

© 2009 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 5.5.2024 from https://www.degruyter.com/document/doi/10.2478/s11533-009-0013-8/html
Scroll to top button