Skip to main content
Log in

Fractional heat equation and the second law of thermodynamics

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In the framework of second law of thermodynamics, we analyze a set of fractional generalized heat equations. The second law ensures that the heat flows from hot to cold regions, and this condition is analyzed in the context of the Fractional Calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Kilbas, T. Pierantozzi, J.J. Trujillo, L. Vázquez, On the solution of fractional evolution equations. J. Phys. A: Math. Gen. 37 (2004), 3271–3283.

    Article  MATH  Google Scholar 

  2. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, Elsevier (2006).

    MATH  Google Scholar 

  3. Y. Luchko, M. Rivero, J.J. Trujillo, M.P. Velasco, Fractional models, non-locality and complex systems. Computers and Mathematics with Applications 59, No 3 (2010), 1048–1056.

    MATH  MathSciNet  Google Scholar 

  4. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192; http://www.math.bas.bg/~fcaa/volume4/jlumapa-1.gif

    MATH  MathSciNet  Google Scholar 

  5. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Metzler, T.F. Nonnemacher, Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation. Chem. Phys. 284 (2002), 67–90.

    Article  Google Scholar 

  7. J.W. Nunziato, On heat conduction in materials with memory. Quart. Applied Mathematics 29 (1971), 187–204.

    MATH  MathSciNet  Google Scholar 

  8. P. Paradisi, R. Cesari, F. Mainardi, F. Tampieri, A generalized Fick’s law to describe non-local transport processes. Physica A 293 (2001), 130–142.

    Article  MATH  Google Scholar 

  9. T. Pierantozzi, L. Vázquez, An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like. J. Math. Phys. 46 (2005), 113512.

    Article  MathSciNet  Google Scholar 

  10. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego et al. (1999).

    MATH  Google Scholar 

  11. M.B. Rubin, Hyperbolic heat conduction and the second law. Int. J. Engng. Sci. 30, No 11 (1992), 1665–1676.

    Article  MATH  Google Scholar 

  12. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993).

    MATH  Google Scholar 

  13. J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 1140–1153; doi:10.1016/j.cnsns.2010.05.027

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Vázquez.

Additional information

Dedicated to Prof. Stefan Samko on the occasion of his 70th Anniversary

About this article

Cite this article

Vázquez, L., Trujillo, J.J. & Pilar Velasco, M. Fractional heat equation and the second law of thermodynamics. fcaa 14, 334–342 (2011). https://doi.org/10.2478/s13540-011-0021-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-011-0021-9

MSC 2010

Key Words and Phrases

Navigation