Skip to main content
Log in

Fractional dynamics of allometry

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Allometry relations (ARs) in physiology are nearly two hundred years old. In general if X ij is a measure of the size of the i th member of a complex host network from species j and Y ij is a property of a complex subnetwork embedded within the host network an intraspecies AR exists between the two when Y ij = aX b ij . We emphasize that the reductionist models of AR interpret X ij and Y ij as dynamic variables, albeit the ARs themselves are explicitly time independent. On the other hand, the phenomenological models of AR are based on the statistical analysis of data and interpret 〈X i 〉 and 〈Y i 〉 as averages over an ensemble of individuals to yields the interspecies AR 〈Y i 〉 = aX i b. Modern explanations of AR begin with the application of fractal geometry and fractal statistics to scaling phenomena. The detailed application of fractal geometry to the explanation of intraspecies ARs is a little over a decade old and although well received it has not been universally accepted. An alternate perspective is given by the interspecies AR based on linear regression analysis of fluctuating data sets. We emphasize that the intraspecies and interspecies ARs are not the same and show that the interspecies AR can only be derived from the intraspecies one for a narrow distribution of fluctuations. This condition is not satisfied by metabolic data as is shown separately for aviary and mammal data sets. The empirical distribution of metabolic allometry coefficients is shown herein to be Pareto in form. A number of reductionist arguments conclude that the allometry exponent is universal, however herein we derive a deterministic relation between the allometry exponent and the allometry coefficient using the fractional calculus. The co-variation relation violates the universality assumption. We conclude that the interspecies physiologic AR is entailed by the scaling behavior of the probability density, which is derived using the fractional probability calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Albert and A.-L. Barabasi, Statisitical mechanics of complex networks. Rev. Mod. Phys. 74 (2002), 47–97.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Aquino, M. Bolgona, P. Grigolini and B.J. West, Beyond the death of linear response: 1/f optimal information transport. Phys. Rev. Lett. 105 (2010), 069901–069905.

    Article  Google Scholar 

  3. J.R. Banavar, J. Damuth, A. Maritan and A. Rinaldo, Ontogenetic growth: Modeling universality and scaling. Nature 420 (2002), 626–627.

    Article  Google Scholar 

  4. W.W. Calder, III, Size, Function and Life History. Harvard University Press, Cambridge, MA (1984).

    Google Scholar 

  5. G. Cuvier, Recherches sur les ossemens fossils. Paris (1812).

  6. P.S. Dodds, D.H. Rothman and J.S. Weitz, Re-examination of the “3/4-law” of Metabolism. J. Theor. Biol. 209 (2001), 9–27.

    Article  Google Scholar 

  7. H.A. Feldman and T.A. McMahon, The 3/4 mass exponent for energy metabolism is not a statistical artifact. Resp. Physiol. 52 (1983), 149–163.

    Article  Google Scholar 

  8. F. Galton, The geometric mean in vital and social statistics. Proc. R. Soc. London 29 (1879), 365–367.

    Article  Google Scholar 

  9. P.D. Gingerich, Arithmetic or geometry normality of biological variation: An empiricial test of theory. J. Theor. Biol. 204 (2000), 201–221.

    Article  Google Scholar 

  10. N.R. Glass, Discussion of calculation of power function with special reference to respiratory matabolism in fish. J. Fish Res. Board Can. 26 (1969), 2643–2650.

    Article  Google Scholar 

  11. D.S. Glazier, Beyond the “3/4-power law”: Variation in the intra- and interspecific scaling of metabolic rate in animals. Biol. Rev. 80 (2005), 611–662.

    Article  Google Scholar 

  12. D.S. Glazier, A unifying explanation for diverse metabolic scaling in animals and plants. Biol. Rev. 85 (2010), 111–138.

    Article  Google Scholar 

  13. B.V. Gnedenko and A.N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables. Transl. from Russian by Chung K.L., Addison-Wesley, Reading, MA (1954).

    MATH  Google Scholar 

  14. B.V. Gnedenko, The Theory of Probability. Transl. by B.D. Seckler, Chelsea Pub., New York (1962).

    Google Scholar 

  15. S.J. Gould, Allometry and size in ontogeny and phylogeny. Biol. Rev. Cam. Philos. Soc. 41 (1966), 587–640.

    Article  Google Scholar 

  16. B.T. Grenfell, C.S. Williams, O.N. Bjornstad and J.R. Banavar, Simplifying biological complexity. Nature 21 (2006), 212–213.

    Google Scholar 

  17. J.H. Graham, K. Shumazu, J.E. Emien, D.C. Freeman and J. Merkel, Growth models and the expected distribution of fluctuating symmetry. Biol. J. Linn. Soc. 80 (2003), 57–65.

    Article  Google Scholar 

  18. J.M. Hausdorff, P.L. Purdon, C.-K. Peng, Z. Ladin, J.Y. Wei and A.L. Goldberger, Fractal dynamics of human gait: Stability of long-range correlations. J. Appl. Physiol. 80 (1996), 1448–1457.

    Google Scholar 

  19. A.A. Heusner, Energy metabolism and body size: I. Is the 0.75 mass exponent of Kleiber’s equation a statistical artifact?. Resp. Physiol. 4, No 8 (1982), 1–12.

    Article  Google Scholar 

  20. A.A. Heusner, Size and power in mammals. J. Exp. Biol. 160 (1991), 25–54.

    Google Scholar 

  21. J.S. Huxley, Problems of Relative Growth. Dial Press, New York (1931).

    Google Scholar 

  22. P. Kaitaniemi, How to derive biological information from the value of the normalization constant in allometric equations. PLoS ONE 3, No 4, e1932 (2008), 1–4.

    Article  Google Scholar 

  23. A.J. Kerkhoff and B.J. Enquist, Multiplicative by nature: Why logarithmic transformation is necessary in allometry. J. Theor. Biol. 257 (2009), 519–521.

    Article  Google Scholar 

  24. J. Klafter and R. Metzler, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rept. 339 (2000), 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Lindenberg and B.J. West, The Nonequilibrium Statistical Mechanics of Open and Closed Systems. VCH, New York (1990).

    MATH  Google Scholar 

  26. E.N. Lorenz, Deterministic nonperiodic flow. J. Atmos. Sci. 20 (1963), 130–141.

    Article  Google Scholar 

  27. E.N. Lorenz, The Essence of Chaos. University of Washington Press, Seattle (1993).

    Book  MATH  Google Scholar 

  28. R.D. Manaster and S. Manaster, Techniques for estimating allometric equations. J. Morphol. 147 (1975), 299–308.

    Article  Google Scholar 

  29. B.B. Mandelbrot, Fractals, Form and Chance. W.H. Freeman, San Francisco, CA (1977).

    MATH  Google Scholar 

  30. T.A. McMahon and J.T. Bonner, On Size and Life. Sci. Amer. Library, New York (1983).

    Google Scholar 

  31. B.K. McNab, Ecological factors affect the level and scaling of avian BMR. Comp. Biochem. Physiol. 152 (2009), 22–45.

    Article  Google Scholar 

  32. P. Meakin, Fractals, Scaling and Growth Far From Equilibrium. Cambridge University Press, Cambridge, MA (1998).

    MATH  Google Scholar 

  33. E.W. Montroll and G. Weiss, Random walks on lattices, II. J. Math. Phys. 6 (1965), 167–181.

    Article  MathSciNet  Google Scholar 

  34. E.W. Montroll and B.J. West, On an enriched collection of stochastic processes. In: Fluctuation Phenomena, Eds. E.W. Montroll and J.L. Lebowitz, Studies in Statistical Mechanics, Vol. VII, North-Holland, Amsterdam (1979).

    Google Scholar 

  35. T.R. Nelson, B.J. West and A.L. Goldberger, The fractal lung: universal and species-related scaling patterns. Experientia 46 (1990), 251–254.

    Article  Google Scholar 

  36. M.E.J. Newman, The structure and function of complex networks. SIAM Rev. 45 (2003), 167–256.

    Article  MathSciNet  MATH  Google Scholar 

  37. M.E.J. Newman, Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46 (2005), 323–351.

    Article  Google Scholar 

  38. E. Ott, Chaos in Dynamical Systems. Cambridge University Press, New York (1993).

    MATH  Google Scholar 

  39. G.C. Packard, On the use of logarithmic transformations in allometric analysis. J. Theor. Biol. 257 (2008), 515–518.

    Article  Google Scholar 

  40. C.-K. Peng, J. Mistus, J.M. Hausdorff, S. Havlin, H.E. Stanley and A.L. Goldberger, Long-range anti-correlations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70 (1993), 1343–1346.

    Article  Google Scholar 

  41. R.H. Peters, The Ecological Implications of Body Size. Cambridge University Press, Cambridge (1983).

    Google Scholar 

  42. L.E. Reichl, A Modern Course in Statistical Physics. John Wiley & Sons, New York (1998).

    MATH  Google Scholar 

  43. M.J. Reiss, The Allometry of Growth and Reproduction. Cambridge University Press, Cambridge (1989).

    Book  Google Scholar 

  44. G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapman & Hall, New York (1994).

    MATH  Google Scholar 

  45. V.M. Savage, J.P. Gillooly, W.H. Woodruff, G.B. West, A.P. Allen, B.J. Enquist and J.H. Brown, The predominance of quarter-power scaling biology. Func. Ecol. 18 (2004), 257–282.

    Article  Google Scholar 

  46. K. Schmidt-Nielsen, Scaling, Why is Animal Size so Important?. Cambridge University Press, Cambridge (1984).

    Google Scholar 

  47. V. Seshadri and B.J. West, Fractal dimensionality of Lévy processes. Proc. Nat. Acad. Sci. USA 79 (1982), 4501–4505.

    Article  MathSciNet  MATH  Google Scholar 

  48. R.J. Smith, Logarithmic transformation bias in allometry. Amer. J. Phys. Anthropol. 90 (1993), 215–228.

    Article  Google Scholar 

  49. C.F. Stevens, Darwin and Huxley revisited: The origin of allometry. J. Biol. 8 (2009), 14–21.

    Article  Google Scholar 

  50. V.V. Uchaikin, Montroll-Weiss problem, fractional diffusion equations and stable distribution. Int. J. Theor. Phys. 39 (2000), 3805–3813.

    Article  MathSciNet  Google Scholar 

  51. D.I. Warton, I.J. Wright, D.S. Falster and M. Westoby, Bivariate line fitting methods for allometry. Biol. Rev. 85 (2006), 259–291.

    Article  Google Scholar 

  52. D.J. Watts, Small Worlds. Princeton University Press, Princeton, N.J. (1999).

    Google Scholar 

  53. E.R. Weibel, Symmorphosis: On Form and Function in Shaping Life. Harvard University Press, Cambridge, MA (2000).

    Google Scholar 

  54. B.J. West and V. Seshadri, Linear systems with Lévy fluctuations. Physica A 113 (1982), 293–216.

    Article  MathSciNet  Google Scholar 

  55. B.J. West, V. Barghava and A.L. Goldberger, Beyond the principle of similitude: renormaization in the bronchial tree. J. Appl. Physiol. 60 (1986), 1089–1097.

    Google Scholar 

  56. B.J. West, Physiology, Promisucity and Prophecy at the Millennium: A Tale of Tails. Studies of Nonlinear Phenomena in Life Science: Vol. 7, World Scientific, Singapore (1999).

    Google Scholar 

  57. B.J. West, Where Medicine Went Wrong. Studies of Nonlinear Phenomena in Life Science: Vol. 11, World Scientific, Singapore (2006).

    Book  Google Scholar 

  58. B.J. West, E.L. Geneston and P. Grigolini, Maximizing information exchange between complex networks. Phys. Rept. 468 (2008), 1–99.

    Article  MathSciNet  MATH  Google Scholar 

  59. B.J. West, Fractal physiology and the fractional calculus: a perspective. Front. Physiol. 1, No 12 (2010); doi: 10.3389/fphys.2010.00012, at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059975/

  60. B.J. West and D. West, Origin of allometry hypothesis. In: Fractional Dynamics: Recent Advances. J. Klafter, S.C. Lim, R. Metzler (Editors), World Sci. (2011), 375–390; at http://ebooks.worldscinet.com/ISBN/9789814340595/9789814340595.html

  61. D. West and B.J. West, Are allometry and macroevolution related?. Physica A 390 (2011), 1733–1736.

    Article  Google Scholar 

  62. D. West and B.J. West, Statistical origin of allometry. Europhys. Lett. 94 (2011), 38005-p1–p6.

    Article  Google Scholar 

  63. B.J. West and P. Grigolini, Complex Webs: Anticipating the Improbable. Cambridge University Press, Cambridge (2011).

    MATH  Google Scholar 

  64. G.B. West, J.H. Brown and B.J. Enquist, A general model for the origin of allometric scaling laws in biology. Science 276 (1997), 122–124.

    Article  Google Scholar 

  65. G.B. West, The origin of universal scaling laws in biology. Physica A 263 (1999), 104–113.

    Article  Google Scholar 

  66. G.B. West, V.M. Savage, J. Gillooly, B.J. Enquist, W.H. Woodruff and J.H. Brown, Why does metabolic rate scale with body size?. Nature 421 (2003), 712–714.

    Article  Google Scholar 

  67. C.R. White, P. Cassey and T.M. Blackburn, Metabolic allometry exponents are not universal. Ecology 88 (2007), 315–323.

    Article  Google Scholar 

  68. J.H. Zar, Calculation and miscalculation of the allometric equation as a model in biological data. BioScience 18 (1968), 1118–1120.

    Article  Google Scholar 

  69. V.M. Zolotarev, One-dimensional Stable Distributions. Transl. Math. Monographs 65, Amer. Math. Soc., Providence, RI (1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. West.

About this article

Cite this article

West, B.J., West, D. Fractional dynamics of allometry. fcaa 15, 70–96 (2012). https://doi.org/10.2478/s13540-012-0006-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0006-3

MSC 2010

Key Words and Phrases

Navigation