Skip to main content
Log in

Towards a combined fractional mechanics and quantization

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

A fractional Hamiltonian formalism is introduced for the recent combined fractional calculus of variations. The Hamilton-Jacobi partial differential equation is generalized to be applicable for systems containing combined Caputo fractional derivatives. The obtained results provide tools to carry out the quantization of nonconservative problems through combined fractional canonical equations of Hamilton type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M.C. Abreu and C.F.L. Godinho, Fractional Dirac bracket and quantization for constrained systems. Phys. Rev. E 84 (2011), 026608, 8 pp.

    Google Scholar 

  2. O.P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, No 1 (2002), 368–379.

    Article  MathSciNet  MATH  Google Scholar 

  3. O.P. Agrawal, S.I. Muslih and D. Baleanu, Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, No 12 (2011), 4756–4767.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Almeida, S. Pooseh and D.F.M. Torres, Fractional variational problems depending on indefinite integrals. Nonlinear Analysis 75, No 3 (2012), 1009–1025.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Almeida and D.F.M. Torres, Leitmann’s direct method for fractional optimization problems. Appl. Math. Comput. 217, No 3 (2010), 956–962.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Almeida and D.F.M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, No 3 (2011), 1490–1500.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Almeida and D.F.M. Torres, Fractional variational calculus for nondifferentiable functions. Comput. Math. Appl. 61, No 10 (2011), 3097–3104.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Baleanu, Fractional Hamiltonian analysis of irregular systems. Signal Process. 86, No 10 (2006), 2632–2636.

    Article  MATH  Google Scholar 

  9. D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific Publ. (Ser. on Complexity, Nonlinearity and Chaos, 3), N. Jersey-London-Singapore (2012).

  10. N.R.O. Bastos, R.A.C. Ferreira and D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29, No 2 (2011), 417–437.

    Article  MathSciNet  MATH  Google Scholar 

  11. G.S.F. Frederico and D.F.M. Torres, Nonconservative Noether’s theorem in optimal control. Int. J. Tomogr. Stat. 5, No W07 (2007), 109–114.

    MathSciNet  Google Scholar 

  12. G.S.F. Frederico and D.F.M. Torres, Fractional conservation laws in optimal control theory. Nonlinear Dynam. 53, No 3 (2008), 215–222.

    Article  MathSciNet  MATH  Google Scholar 

  13. G.S.F. Frederico and D.F.M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense. Appl. Math. Comput. 217, No 3 (2010), 1023–1033.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Goldstein, Classical Mechanics. Addison-Wesley Press, Inc., Cambridge, MA (1951).

    MATH  Google Scholar 

  15. A.K. Golmankhaneh, Fractional Poisson bracket. Turk. J. Phys. 32 (2008), 241–250.

    Google Scholar 

  16. M.A.E. Herzallah and D. Baleanu, Fractional-order Euler-Lagrange equations and formulation of Hamiltonian equations. Nonlinear Dynam. 58, No 1–2 (2009), 385–391.

    Article  MathSciNet  MATH  Google Scholar 

  17. M.A.E. Herzallah and D. Baleanu, Fractional-order variational calculus with generalized boundary conditions. Adv. Difference Equ. 2011 (2011), Article ID 357580, 9 pp.

  18. A.B. Malinowska and D.F.M. Torres, Leitmann’s direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales. Appl. Math. Comput. 217, No 3 (2010), 1158–1162.

    Article  MathSciNet  MATH  Google Scholar 

  19. A.B. Malinowska and D.F.M. Torres, Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14, No 4 (2011), 523–537; DOI: 10.2478/s13540-011-0032-6; http://www.springerlink.com/content/1311-0454/14/4/.

    MathSciNet  Google Scholar 

  20. A.B. Malinowska and D.F.M. Torres, Multiobjective fractional variational calculus in terms of a combined Caputo derivative. Appl. Math. Comput. 218, No 9 (2012), 5099–5111.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Odzijewicz, A.B. Malinowska and D.F.M. Torres, Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal. 75, No 3 (2012), 1507–1515.

    Article  MathSciNet  MATH  Google Scholar 

  22. E.M. Rabei and B.S. Ababneh, Hamilton-Jacobi fractional mechanics. J. Math. Anal. Appl. 344, No 2 (2008), 799–805.

    Article  MathSciNet  MATH  Google Scholar 

  23. E.M. Rabei, K.I. Nawafleh, R.S. Hijjawi, S.I. Muslih and D. Baleanu, The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 327, No 2 (2007), 891–897.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Riewe, Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E (3) 53, No 2 (1996), 1890–1899.

    Article  MathSciNet  Google Scholar 

  25. F. Riewe, Mechanics with fractional derivatives. Phys. Rev. E (3) 55, No 3 (1997), Part B, 3581–3592.

    Article  MathSciNet  Google Scholar 

  26. C.J. Silva and D.F.M. Torres, Absolute extrema of invariant optimal control problems. Commun. Appl. Anal. 10, No 4 (2006), 503–515.

    MathSciNet  MATH  Google Scholar 

  27. D.F.M. Torres, On the Noether theorem for optimal control. Eur. J. Control 8, No 1 (2002), 56–63.

    Article  Google Scholar 

  28. D.F.M. Torres, Gauge symmetries and Noether currents in optimal control. Appl. Math. E-Notes 3 (2003), 49–57.

    MathSciNet  MATH  Google Scholar 

  29. D.F.M. Torres, Proper extensions of Noether’s symmetry theorem for nonsmooth extremals of the calculus of variations. Commun. Pure Appl. Anal. 3, No 3 (2004), 491–500.

    Article  MathSciNet  MATH  Google Scholar 

  30. D.F.M. Torres and G. Leitmann, Contrasting two transformationbased methods for obtaining absolute extrema. J. Optim. Theory Appl. 137, No 1 (2008), 53–59.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka B. Malinowska.

About this article

Cite this article

Malinowska, A.B., Torres, D.F.M. Towards a combined fractional mechanics and quantization. fcaa 15, 407–417 (2012). https://doi.org/10.2478/s13540-012-0029-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0029-9

MSC 2010

Key Words and Phrases

Navigation