Skip to main content
Log in

Numerical methods for solving the multi-term time-fractional wave-diffusion equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, the multi-term time-fractional wave-diffusion equations are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Baeumer and M.M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4, No 4 (2001), 481–500.

    MathSciNet  MATH  Google Scholar 

  2. B. Baeumer, S. Kurita and M.M. Meerschaert, Inhomogeneous fractional diffusion eqautions. Fract. Calc. Appl. Anal., 8, No 4 (2005), 371–376; at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  3. D. Bolster, M.M. Meerschaert and A. Sikorskii, Product rule for vector fractional derivatives. Fract. Calc. Appl. Anal. 15, No 3 (2012), 463–478; DOI:10.2478/s13540-012-0033-0; at http://link.springer.com/article/10.2478/s13540-012-0033-0.

    MathSciNet  Google Scholar 

  4. W. Chen, S. Holm, Modified Szabo’s wave equation models for lossy media obeying frequency power law. J. Acoust. Soc. Am. 114 (2003), 2570–2754.

    Article  Google Scholar 

  5. W. Deng, C. Li, Q. Guo, Analysis of fractional differential equations with multi-orders. Fractals 15, No 2 (2007), 173–182.

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Deng, C. Li, J. Lu, Stability analysis of linear fractional differential system with multiple time-delays. Nonlinear Dynamics 48, No 4 (2007), 409–416.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Diethelm, The Analysis of Fractional Differential Equations. Springer, Berlin etc. (2010).

    Book  Google Scholar 

  8. F.A. Duck, Physical Properties of Tissue: A Comprehensive Reference Book. Academic Press (1990).

  9. Y. Gu, P. Zhuang, F. Liu, An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Computer Modeling in Eng. & Sciences 56 (2010), 303–334.

    MathSciNet  MATH  Google Scholar 

  10. M. Ilic, F. Liu, I. Turner, V. Anh, Numerical approximation of a fractional-in-space diffusion equation (I). Fract. Calc. Appl. Anal., 8, No 3 (2005), 323–341; at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  11. M. Ilic, F. Liu, I. Turner, V. Anh, Numerical approximation of a fractional-in-space diffusion equation (II) — with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal., 9, No 4 (2006), 333–349; at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  12. H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 389 (2012), 1117–1127.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.K. Kelly, R.J. McGough, M.M. Meerschaert, Analytical time-domain Green’s functions for power-law media. J. Acoust. Soc. Am. 124 (2008), 2861–2872.

    Article  Google Scholar 

  14. C. Li, F. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 383–406; DOI:10.2478/s13540-012-0028-x; at http://link.springer.com/article/10.2478/s13540-012-0028-x

    MathSciNet  Google Scholar 

  15. M. Liebler, S. Ginter, T. Dreyer, R.E. Riedlinger, Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation. J. Acoust. Soc. Am. 116 (2004), 2742–2750.

    Article  Google Scholar 

  16. F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Planck equation. J. Comp. Appl. Math. 166 (2004), 209–219.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrag, Stability and convergence of the difference methods for the space-time fractional advectiondiffusion equation. J. Comp. Appl. Math. 191 (2007), 12–20.

    Article  MATH  Google Scholar 

  18. F. Liu, C. Yang, K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comp. Appl. Math. 231 (2009), 160–176.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Liu, P. Zhuang, K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models. Computers and Math. with Appl. 63 (2012), 1–22.

    Article  MathSciNet  Google Scholar 

  20. Q. Liu, F. Liu, I. Turner, V. Anh, Approximation of the Lévy- Feller advection-dispersion process by random walk and finite difference method. J. Comp. Phys. 222 (2007), 57–70.

    Article  MathSciNet  MATH  Google Scholar 

  21. Q. Liu, Y. Gu, P. Zhuang, F. Liu, Y. Nie, An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48 (2011), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Luchko, Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538–548.

    Article  MathSciNet  MATH  Google Scholar 

  23. M.M. Meerschaert and H.P. Scheffler, Semistable Lévy motion. Fract. Calc. Appl. Anal., 5, No 1 (2002), 27–54.

    MathSciNet  MATH  Google Scholar 

  24. M.M. Meerschaert, J. Mortensen, H.P. Scheffler, Vector Grünwald formula for fractional derivatives. Fract. Calc. Appl. Anal. 7, No 1 (2004), 61–82.

    MathSciNet  MATH  Google Scholar 

  25. M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. Comp. Appl. Math. 172 (2004), 65–77.

    Article  MathSciNet  MATH  Google Scholar 

  26. M.M. Meerschaert, P. Straka, Y. Zhou, R.J. McGough, Stochastic solution to a time-fractional attenuated wave equation. Nonlinear Dynamics 70 (2012), 1273–1281.

    Article  MathSciNet  Google Scholar 

  27. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  28. I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).

    Google Scholar 

  29. J.P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J. Comp. Appl. Math. 193 (2006), 243–268.

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Schumer, D.A. Benson, M.M Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport. Water Resources Researces 39 (2003), 1296–1307.

    Google Scholar 

  31. S. Shen, F. Liu, V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numerical Algorithm 56 (2011), 383–404.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Stojanovic, Numerical method for solving diffusion-wave phenomena. J. Comp. Appl. Math. 235 (2011), 3121–3137.

    Article  MathSciNet  MATH  Google Scholar 

  33. P. Straka, M.M. Meerschaert, R.J. McGough, and Y. Zhou, Fractional wave equations with attenuation. Fract. Calc. Appl. Anal. 16, No 1 (2013), 262–272 (same issue); DOI:10.2478/s13540-013-0016-9; at http://link.springer.com/journal/13540.

    MathSciNet  Google Scholar 

  34. T.L. Szabo, Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96 (1994), 491–500.

    Article  Google Scholar 

  35. C. Yang, F. Liu, A computationally effective predictor-corrector method for simulating fractional order dynamical control system. ANZIAM J. 47 (2006), 168–184.

    Google Scholar 

  36. Y. Zhang, D.A. Benson, D.M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Advances in Water Resources 32 (2009), 561–581.

    Article  Google Scholar 

  37. F. Zhang, C. Li, Stability analysis of fractional differential systems with order lying in (1,2). Advances in Difference Equations (2011), ID 213485.

  38. P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable order fractional advection diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47 (2009), 1760–1781.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawang Liu.

Additional information

Editorial Note: The first author Fawang Liu received the ”Mittag-Leffler Award: FDA Achievement Award” at the 2012 Symposium on Fractional Differentiation and Its Applications (FDA’2012), Hohai University, Nanjing.

About this article

Cite this article

Liu, F., Meerschaert, M.M., McGough, R.J. et al. Numerical methods for solving the multi-term time-fractional wave-diffusion equation. fcaa 16, 9–25 (2013). https://doi.org/10.2478/s13540-013-0002-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0002-2

MSC 2010

Key Words and Phrases

Navigation