Skip to main content
Log in

Waveform relaxation methods for fractional functional differential equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, we use waveform relaxation method to solve fractional functional differential equations. Under suitable conditions imposed on the so-called splitting functions the convergence results of the waveform relaxation method are given. Delay dependent error estimates for the method are derived. Error bounds for some special cases are considered. Numerical examples illustrate the feasibility and efficiency of the method. It is the first time for applying the method in the fractional functional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Agarwal, Y. Zhou, J.R. Wang, X.N. Luo, Fractional functional differential equations with causal operators in Banach spaces. Mathematical and Computer Modelling 54 (2011), 1440–1452.

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Ahmad, J.J. Nieto, Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative. Fractional Calculus and Applied Analysis 15 (2012), 451–462.

    Article  MathSciNet  Google Scholar 

  3. B. Ahmad, J.J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Analysis: Real World Applications 13 (2012), 599–606.

    Article  MathSciNet  MATH  Google Scholar 

  4. Z. Bartoszewski, M. Kwapisz, On error estimates for waveform relaxation methods for delay-differential equations. SIAM Journal on Numerical Analysis 38 (2000), 639–659.

    Article  MathSciNet  MATH  Google Scholar 

  5. Z. Bartoszewski, M. Kwapisz, Delay dependent estimations for waveform relaxation methods for nertral differential-functional systems. Computers and Mathematics with Applications 48 (2004), 1877–1892.

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Bartoszewski, M. Kwapisz, On the convergence of waveform relaxation methods for differential-functional systems of equations. J. of Mathematical Analysis and Applications 235 (1999), 478–496.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Boufoussi, S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Statistics and Probability Letters 82 (2012), 1549–1558.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Cesbron, A. Mellet, K. Trivisa, Anomalous transport of particles in plasma physics. Applied Mathematics Letters 25 (2012), 2344–2348.

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Diethelm, J.F. Neville, Analysis of fractional differential equations. J. of Mathematical Analysis and Applications 265 (2002), 229–248.

    Article  MATH  Google Scholar 

  10. X.L. Ding, Y.L. Jiang, Semilinear fractional differential equations based on a new integral operator approach. Communications in Nonlinear Science and Numerical Simulation 17 (2012), 5143–5150.

    Article  MathSciNet  MATH  Google Scholar 

  11. M.G. Hall, T.R. Barrick, From diffusion-weighted MRI to anomalous diffusion imaging. Magnetic Resonance in Medicine 59 (2008), 447–455.

    Article  Google Scholar 

  12. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.

    Book  MATH  Google Scholar 

  13. Y.L. Jiang, X.L. Ding, Nonnegative solutions of fractional functional differential equations. Computers and Mathematics with Applications 63 (2012), 896–904.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y.L. Jiang, R.M.M. Chen, O. Wing, Improving convergence performance of relaxation-based transient analysis by matrix splitting in circuit simulation. IEEE Transactions on Circuits and Systems-I 48 (2001), 769–780.

    Article  MathSciNet  MATH  Google Scholar 

  15. Y.L. Jiang, A general approach to waveform relaxation solutions of nonlinear differential-algebraic equations: The continuous-time and discrete-time cases. IEEE Transactions on Circuits and Systems-I 51 (2004), 1770–1780.

    Article  Google Scholar 

  16. Y.L. Jiang, R.M.M. Chen, Z.L. Huang, A parallel approach for computing complex eigenvalue problems. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences E83A (2000), 2000–2008.

    Google Scholar 

  17. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

    Book  MATH  Google Scholar 

  18. V. Lakshmikantham, A.S. Vatsala, Basic theory of fractional differential equations. Nonlinear Analysis: Theory Methods and Applications 69 (2008), 2677–2682.

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Lakshmikantham, Theory of fractional functional differential equations. Nonlinear Analysis: Theory Methods and Applications 69 (2008), 3337–3343.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Lelarasmee, A.E. Ruehli, A.L. Sangiovanni-Vincentelli, The waveform relaxation method for time domain analysis of large scale integrated circuits. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 1 (1982), 131–145.

    Article  Google Scholar 

  21. A.B. Malinowska, D.F.M. Torres, Towards a combined fractional mechanics and quantization. Fractional Calculus and Applied Analysis, 15, No 3 (2012), 407–417; DOI: 10.2478/s13540-012-0029-9; at http://link.springer.com/journal/13540.

    Article  MathSciNet  Google Scholar 

  22. T.A. Maraaba, F. Jarad, D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives. Science in China Series A: Mathematics 51 (2008), 1775–1786.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Orsingher, L. Beghin, Time-fractional telegraph equations and telegraph processes with brownian time. Probability Theory and Related Fields 128 (2004), 141–160.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Podlubny, Fractional Differential Equations. Academic Press, New York, 1999.

    MATH  Google Scholar 

  25. A.K. Shukla, J.C. Prajapati, On a generalization of Mittag-Leffler function and its properties. J. of Mathematical Analysis and Applications, 336 (2007), 797–811.

    Article  MathSciNet  MATH  Google Scholar 

  26. Q.Y. Sun, M. Unser, Left-inverses of fractional Laplacian and sparse stochastic processes, Advances in Comput. Math. 36 (2012), 399–441.

    Article  MathSciNet  MATH  Google Scholar 

  27. J.R. Wang, Y. Zhou, A class of fractional evolution equations and optimal controls. Nonlinear Analysis: Real World Applications 12 (2011), 262–272.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.R. Wang, Y. Zhou, W. Wei, Fractional Schrödinger equations with potential and optimal controls. Nonlinear Analysis: Real World Applications 13 (2012), 2755–2766.

    Article  MathSciNet  MATH  Google Scholar 

  29. Z.M. Yan, Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay. International J. of Control 8 (2012), 1051–1062.

    Article  Google Scholar 

  30. Z.M. Yan, Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay. J. of the Franklin Institute 348 (2011), 2156–2173.

    Article  MATH  Google Scholar 

  31. C.B. Zeng, Y.Q. Chen, Q.G. Yang, The fBm-driven Ornstein-Uhlenbeck process: Probability density function and anomalous diffusion, Fractional Calculus and Applied Analysis 15, No 3 (2012), 479–492; DOI: 10.2478/s13540-012-0034-z; at http://link.springer.com/journal/13540.

    Article  MathSciNet  Google Scholar 

  32. B. Zubik-Kowal, S. Vandewalle, Waveform relaxation for functional-differential equations. SIAM Journal on Scientific Computing 21 (1999), 207–226.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Li Ding.

About this article

Cite this article

Ding, XL., Jiang, YL. Waveform relaxation methods for fractional functional differential equations. fcaa 16, 573–594 (2013). https://doi.org/10.2478/s13540-013-0037-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0037-4

MSC 2010

Key Words and Phrases

Navigation