NEW SHARP BOUNDS FOR GAMMA AND DIGAMMA FUNCTIONS

BY

CRISTINEL MORTICI

Abstract

Motivated by Sandor and Debnath, Batir, we prove that a function involving gamma function is completely monotonic. As applications, we establish new upper and lower bounds for the gamma and digamma functions, with sharp constants.

Mathematics Subject Classification 2000: 30E15, 26D07, 41A60. Key words: factorial function, gamma function, digamma and polygamma functions, completely monotonic function, inequalities, Euler constant.

1. Introduction

We discuss here the approximations of the factorial function of the form

$$
\begin{equation*}
\frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n-\alpha}} \leq n!<\frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n-\beta}} \tag{1.1}
\end{equation*}
$$

where α, β are real parameters. The bounds (1.1) were stated in SANDOR and Debnath [9] with $\alpha=0$ and $\beta=1$. Their result was rediscovered by Guo [5]. Very recently, Batir [3] determined the largest number $\alpha=$ $1-2 \pi e^{-2}$ and the smallest number $\beta=1 / 6$ such that the inequalities (1.1) hold for all $n=1,2,3, \ldots$.

Numerical computations made in [3] show that the upper approximation

$$
\begin{equation*}
n!\approx \frac{n^{n+1} e^{-n} \sqrt{2 \pi}}{\sqrt{n-1 / 6}} \tag{1.2}
\end{equation*}
$$

is better than the other lower approximation from (1.1) (with $\alpha=1-2 \pi e^{-2}$) and also it is more accurate than other known formulas as Stirling's formula,
or Burnside's formula. These facts entitled us to consider the following function associated with the approximation (1.2):

$$
f(x)=\ln \Gamma(x+1)-(x+1) \ln x+x-\ln \sqrt{2 \pi}+\frac{1}{2} \ln \left(x-\frac{1}{6}\right) .
$$

We prove that $-f$ is strictly completely monotonic and as a direct consequence, we establish new double inequalities for $x \geq 1$:

$$
\omega \cdot \frac{x^{x+1} e^{-x} \sqrt{2 \pi}}{\sqrt{x-1 / 6}} \leq \Gamma(x+1)<\frac{x^{x+1} e^{-x} \sqrt{2 \pi}}{\sqrt{x-1 / 6}}
$$

where $\omega=e \sqrt{\frac{5}{12 \pi}}=0.98995 \ldots$ is best possible. Moreover, the following double inequality for $x \geq 1$ is established $\frac{1}{x}-\frac{1}{2\left(x-\frac{1}{6}\right)}<\psi(x)-\left(\ln x-\frac{1}{x}\right)<$ $\frac{1}{x}-\frac{1}{2\left(x-\frac{1}{6}\right)}+\zeta$, where $\zeta=-\gamma+\frac{3}{5}=0.022785 \ldots(\gamma=0.577215 \ldots$ is the Euler constant).

2. The results

The gamma Γ and digamma ψ functions are defined by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t \quad, \quad \psi(x)=\frac{d}{d x}(\ln \Gamma(x))=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}
$$

for all complex numbers x with $\operatorname{Re} x>0$, but here we restrict them to positive real numbers x. We also have $\psi(x+1)=\psi(x)+\frac{1}{x}$, for all $x>0$. The gamma function is an extension of the factorial function, since $\Gamma(n+1)=$ n !, for $n=0,1,2,3 \ldots$ The derivatives $\psi^{\prime}, \psi^{\prime \prime}, \ldots$, known as polygamma functions, have the following integral representations:

$$
\begin{equation*}
\psi^{(n)}(x)=(-1)^{n-1} \int_{0}^{\infty} \frac{t^{n} e^{-x t}}{1-e^{-t}} d t \tag{2.1}
\end{equation*}
$$

for $n=1,2,3, \ldots$. For proofs and other details, see for example, [2]. We also use the following integral representation

$$
\begin{equation*}
\frac{1}{x^{n}}=\frac{1}{(n-1)!} \int_{0}^{\infty} t^{n-1} e^{-x t} d t, \quad n \geq 1 \tag{2.2}
\end{equation*}
$$

Recall that a function f is completely monotonic in an interval I if f has derivatives of all orders in I such that $(-1)^{n} f^{(n)}(x) \geq 0$, for all $x \in I$
and $n=0,1,2,3 \ldots$. If this inequality is strict for all $x \in I$ and all nonnegative integers n, then f is said to be strictly completely monotonic. Completely monotonic functions involving $\ln \Gamma(x)$ are important because they produce bounds for the polygamma functions. A consequence of the famous Hausdorff-Bernstein-Widder theorem states that f is completely monotonic on $[0, \infty)$ if and only if $f(x)=\int_{0}^{\infty} e^{-x t} \varphi(t) d t$, where φ is a nonnegative function on $[0, \infty)$ such that the integral converges for all $x>0$, see [10, p. 161].

Lemma 2.1. For the sequence $x_{n}=\frac{1}{2}\left(\frac{7^{n-1}-1}{6^{n-1}}\right)+\frac{1}{n}-1$ we have $x_{n}>0$, for all $n \geq 4$.

Proof. First note that $x_{4}=\frac{1}{24}$ and $x_{5}=\frac{17}{135}$, so we are concentrated to show that $x_{n}>0$, for all $n \geq 6$.

The function $g(x)=\left(7^{x}-1\right) / 6^{x}$ is strictly increasing, since $g^{\prime}(x)=$ $\frac{1}{6^{x}}\left(\ln 6+7^{x} \ln \frac{7}{6}\right)>0$. Then for all $n \geq 6$, we have $x_{n}>\frac{1}{2}\left(\frac{7^{n-1}-1}{6^{n-1}}\right)-1 \geq$ $\frac{1}{2}\left(\frac{7^{5}-1}{6^{5}}\right)-1>0$ and the conclusion follows.

Now we are in position to prove the following
Theorem 2.1. Let $f:(1 / 6, \infty) \rightarrow \mathbb{R}$, given by $f(x)=\ln \Gamma(x+1)-$ $(x+1) \ln x+x-\ln \sqrt{2 \pi}+\frac{1}{2} \ln \left(x-\frac{1}{6}\right)$. Then $-f$ is strictly completely monotonic.

Proof. We have $f^{\prime}(x)=\psi(x)-\ln x+\frac{1}{2\left(x-\frac{1}{6}\right)}$ and $f^{\prime \prime}(x)=\psi^{\prime}(x)-$ $\frac{1}{x}-\frac{1}{2\left(x-\frac{1}{6}\right)^{2}}$. Using the representations (2.1)-(2.2), we obtain $f^{\prime \prime}(x)=$ $\int_{0}^{\infty} \frac{e^{-x t}}{e^{t}-1} \varphi(t) d t$, where $\varphi(t)=t e^{t}-\left(e^{t}-1\right)-\frac{1}{2} t\left(e^{\frac{7}{6} t}-e^{\frac{1}{6} t}\right)$, or $\varphi(t)=$ $-\sum_{n=4}^{\infty} \frac{x_{n}}{(n-1)!} t^{n}$, where $\left(x_{n}\right)_{n \geq 4}$ is defined in Lemma 2.1. According to Lemma 2.1, we have $\varphi<0$ and then, $-f^{\prime \prime}$ is strictly completely monotonic.

Now, f^{\prime} is strictly decreasing, since $f^{\prime \prime}<0$. But we have $\lim _{x \rightarrow \infty} f^{\prime}(x)=$ 0 , so $f^{\prime}(x)>0$ and consequently, f is strictly increasing. Using the fact that $\lim _{x \rightarrow \infty} f(x)=0$, we deduce that $f<0$. Finally, $-f$ is strictly completely monotonic.

As a direct consequence of the fact that f is strictly increasing, we have $f(1) \leq f(x)<\lim _{x \rightarrow \infty} f(x)=0$, for all $x \geq 1$. As $f(1)=1+\ln \sqrt{\frac{5}{12 \pi}}$, we derive

$$
\omega \cdot \frac{x^{x+1} e^{-x} \sqrt{2 \pi}}{\sqrt{x-1 / 6}} \leq \Gamma(x+1)<\frac{x^{x+1} e^{-x} \sqrt{2 \pi}}{\sqrt{x-1 / 6}}
$$

where $\omega=e \sqrt{\frac{5}{12 \pi}}=0.98995 \ldots$ is best possible.
Using the fact that f^{\prime} is strictly decreasing, we have $\lim _{x \rightarrow \infty} f^{\prime}(x)=0<$ $f^{\prime}(x) \leq f^{\prime}(1)$, for all $x \geq 1$. As we have $f^{\prime}(1)=-\gamma+\frac{3}{5}=0.022785 \ldots$, we obtain $-\frac{1}{2\left(x-\frac{1}{6}\right)}<\psi(x)-\ln x<-\frac{1}{2\left(x-\frac{1}{6}\right)}+\zeta$, with best possible constant $\zeta=-\gamma+\frac{3}{5}=0.022785 \ldots$, which improve other results of the form $\ln x-\frac{1}{x}<$ $\psi(x)<\ln x-\frac{1}{2 x}, x>1$, see $[1,4,6,7,8]$.

REFERENCES

1. Anderson, G.D.; Qiu, S.-L. - A monotoneity property of the gamma function, Proc. Amer. Math. Soc., 125 (1997), 3355-3362.
2. Andrews, G.E.; Askey, R.; Roy, R. - Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999.
3. Batir, N. - Sharp inequalities for factorial n, Proyecciones, 27 (2008), 97-102.
4. Guo, B.-N.; Qi, F. - An algebraic inequality, II, RGMIA Res. Rep. Coll., 4 (2001), 55-61.
5. Guo, S. - Monotonicity and concavity properties of some functions involving the gamma function with applications, JIPAM. J. Inequal. Pure Appl. Math., 7 (2006), Article 45, 7 pp .
6. Martins, J.S. - Arithmetic and geometric means, an applications to Lorentz sequence spaces, Math. Nachr., 139 (1988), 281-288.
7. Minc, H.; Sathre, L. - Some inequalities involving $(r!)^{1 / r}$, Proc. Edinburgh Math. Soc., 14 (1964/1965), 41-46.
8. QI, F. - Three classes of logarithmically completely monotonic functions involving gamma and psi functions, Integral Transforms Spec. Funct., 18 (2007), 503-509.
9. Sandor, J.; Debnath, L. - On certain inequalities involving the constant e and their applications, J. Math. Anal. Appl., 249 (2000), 569-582.
10. Widder, D.V. - The Laplace Transform, Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1941.

> Valahia University of Târgovişte,
> Department of Mathematics,
> Bd. Unirii 18, 130082 Târgovişte,
> ROMANIA
> cmortici@valahia.ro

