Skip to main content
Log in

Twisted burnside theory for the discrete Heisenberg group and for wreath products of some groups

  • Published:
Moscow University Mathematics Bulletin Aims and scope

Abstract

For each positive integer N, an automorphism with the Reidemeister number 2N of the discrete Heisenberg group is constructed; an example of determination of points in the unitary dual object being fixed with respect to the mapping induced by the group automorphism is given. For wreath products of finitely generated Abelian groups and the group of integers, it is proved that if the Reidemeister number of an arbitrary automorphism is finite, then it is equal to the number of fixed points of the induced mapping on a finite-dimensional part of the unitary dual object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Fel’shtyn, “The Reidemeister Number of any Aautomorphism of a Gromov Hyperbolic Group is Infinite,” Zapiski Nauch. Semin. POMI (Geometry and Topology, 6) 279, (2001) [in Russian].

  2. D. Gonçalves and P. Wong, “Twisted Conjugacy Classes in Exponential Growth Groups,” Bull. London Math. Soc. 35(2), 261 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Fel’shtyn and D. Gonçalves, “Reidemeister Numbers of Automorphisms of Baumslag-Solitar Groups,” Algebra and Discrete Math. 3, 36 (2006).

    Google Scholar 

  4. D. Gonçalves and P. Wong, “Twisted Conjugacy Classes in Wreath Products,” Inter. J. Algebra and Comput. 16(2), 875 (2006).

    Article  MATH  Google Scholar 

  5. A. Fel’shtyn and E. Troitsky, “Twisted Burnside Theorem,” Preprint MPIM2005-46 (Max-Planck-Institut für Mathematik, 2005).

  6. J.-P. Serre, Linear Representations of Finite Groups, (Springer, 1977; Mir, Moscow, 1970).

  7. A. Fel’shtyn and E. Troitsky, “A Twisted Burnside Theorem for Countable Groups and Reidemeister Numbers,” in: Proc. Workshop Noncommutative Geometry and Number Theory (Bonn, 2003), Ed. by K. Consani, M. Marcolli, and Yu. Manin, (Vieweg, Brunschweig, 2006), pp. 141–154.

    Chapter  Google Scholar 

  8. A. Fel’shtyn, F. Indukaev, and E. Troitsky, “Twisted Burnside Theorem for Two-Step Torsion-Free Nilpotent Groups,” Preprint MPIM2005-45 (Max-Planck-Institut für Mathematik, 2005).

  9. A. Fel’shtyn, E. Troitsky, and A. Vershik, “Twisted Burnside Theorem for Type II1 Groups: an Example,” Math. Res. Lett. 13(5–6), 719 (2006).

    MATH  MathSciNet  Google Scholar 

  10. A. A. Kirillov, Elements of the Theory of Representations, (Nauka, Moscow, 1978; Springer, 1976).

    Google Scholar 

  11. A. O. Barut and R. Raczka, Theory of Group Representations and Applications, Vol. 2 (PWN, 1977; Moscow, Mir, 1980).

  12. A. O. Barut and R. Raczka, Theory of Group Representations and Applications, Vol. 1 (PWN, 1977; Moscow, Mir, 1980).

  13. B. Amberg, “Groups with Maximum Conditions,” Pacif. J. Math. 32(1), 9 (1970); http://projecteuclid.org.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © F.K. Indukaev, 2007, published in Vestnik Moskovskogo Universiteta, Matematika. Mekhanika, 2007, Vol. 62, No. 6, pp. 9–17.

About this article

Cite this article

Indukaev, F.K. Twisted burnside theory for the discrete Heisenberg group and for wreath products of some groups. Moscow Univ. Math. Bull. 62, 219–227 (2007). https://doi.org/10.3103/S0027132207060022

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027132207060022

Keywords

Navigation