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Positive proportion of small gaps between consecutive primes
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Dedicated to Professors Kálmán Győry, Attila Pethő and András Sárközy

on the occasion of their birthdays

Abstract. In earlier work we proved that there exist small gaps between conse-

cutive primes that are shorter than any arbitrary small multiple of the average spacing

between primes. In this paper we prove that these short gaps occur so frequently that

they form a positive proportion of all the gaps. We also prove some conditional results.

1. Introduction

Let π(x) denote as usual the number of primes ≤ x. The prime number

theorem is the asymptotic relation π(x) ∼ x
log x as x → ∞. Now let pn be the nth

prime. We consider the gaps pn+1 − pn in the sequence of primes. By the prime

number theorem the average of this sequence of gaps is log pn. In [3] we proved

that

lim inf
n→∞

pn+1 − pn
log pn

= 0, (1.1)

so that there are gaps arbitrarily smaller than the average. In this paper we prove

that these small gaps occur so frequently that they form a positive proportion of

Mathematics Subject Classification: Primary: 11N05; Secondary: 11N36.
Key words and phrases: differences between consecutive primes, prime gaps, sieve methods.
The first author was supported by NSF; this study was done while the second and third authors

were members at the Institute for Advanced Studies, Princeton during Fall 2009 and were

supported by the Oswald Veblen Fund; the second author also acknowledges the partial support

of ERC-AdG. No.228005.



434 Daniel Alan Goldston, János Pintz and Cem Yalçın Yıldırım

all the gaps. Define the distribution function for small gaps between consecutive

primes by

P (x, η) :=
1

π(x)

∑

pn≤x
pn+1−pn≤η log pn

1. (1.2)

Theorem 1. For any fixed η > 0, we have

P (x, η) Àη 1, as x → ∞. (1.3)

Thus the small gaps between consecutive primes constitute a positive proportion

of the set of all gaps between consecutive primes.

Our method actually obtains an explicit dependence on η in the lower bound

in (1.3); we leave this for a later paper [4]. (The result is exponentially small in

a power of η.) It has been conjectured that primes are distributed around their

average spacing in a Poisson distribution. Gallagher [2] has proved that this

is a consequence of the Hardy–Littlewood prime tuple conjecture. If this is the

case, then for fixed η > 0,

P (x, η) ∼ 1− e−η as x → ∞, (1.4)

and consequently

P (x, η) ∼ η when η → 0 sufficiently slowly as x → ∞. (1.5)

By sieve methods it is easy to obtain an upper bound of this magnitude for

P (x, η). Obviously P (x, η) ≤ 1, so we only need to consider η ¿ 1.

Theorem 2. For 1/ log x ¿ η ¿ 1, we have

P (x, η) ¿ η, as x → ∞. (1.6)

We thus see that Theorem 1 can not continue to hold if η → 0; there are not

a positive proportion of prime gaps smaller than η log pn if η → 0 as pn → ∞.

The method we use for our results on small gaps between primes uses infor-

mation on the distribution of primes in arithmetic progressions, specifically what

is called an admissible level of distribution ϑ. The precise definition may be found

in [3], but roughly this means that the primes less than or equal to x are distri-

buted evenly among the arithmetic progressions a(mod q), (a, q) = 1, for almost

all progressions with 1 ≤ q ≤ Q = xϑ−ε. The unconditional results use ϑ = 1/2

which is known to hold by the Bombieri–Vinogradov theorem. If we assume some

ϑ > 1/2 holds then we obtain bounded gaps between primes. The method we use

here does not lead to the conjectured number of such bounded gaps, but when

applied to P (x, η) does obtain lower bounds closer to the conjectured asymptotic

relation in (1.5).
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Theorem 3. Suppose some ϑ ≥ ϑ0 > 1
2 is an admissible level of distribution

for primes. Then there exists an integer m(ϑ0) such that for 1/ log x ¿ η ¿ 1,

we have

P (x, η) À ηm(ϑ0), as x → ∞. (1.7)

In particular if ϑ0 > .971 then P (x, η) À η5 and if ϑ0 > .953 then P (x, η) À η6.

Our method only applies to obtain results on pairs of nearby primes unless

we assume the Elliott–Halberstam conjecture that ϑ = 1 is admissible. With this

conjecture the method is able to prove the existence of triples of primes closer than

any multiple of the average spacing, although it can not produce bounded gaps

between such triples. With this conjecture, the proof of Theorem 1 immediately

leads to the following result.

Theorem 4. Assume the Elliott–Halberstam conjecture that ϑ = 1 is an

admissible level of distribution for primes. Then for any fixed η > 0, we have

P2(x, η) :=
1

π(x)

∑

pn≤x
pn+2−pn≤η log pn

1 Àη 1, as x → ∞. (1.8)

2. Results from the paper Primes in Tuples I

Let us recall briefly how the result (1.1) was obtained. Consider the k-tuple

H = {h1, h2, . . . , hk} with distinct integers 1 ≤ h1, . . . , hk ≤ h, (2.1)

and for a prime p denote by νp(H) the number of distinct residue classes modulo

p occupied by the entries of H. The singular series associated with H is defined

as

S(H) :=
∏
p

(
1− 1

p

)−k (
1− νp(H)

p

)
, (2.2)

the product being convergent because νp(H) = k for p > h. We say that H is

admissible if

PH(n) := (n+ h1)(n+ h2) · · · (n+ hk) (2.3)

is not divisible by a fixed prime number for every n, which is equivalent to νp(H) 6=
p for all p and therefore also to S(H) 6= 0. That {n+ h1, n+ h2, . . . , n+ hk} is a

prime tuple, i.e. each entry is prime, is equivalent to PH(n) being a product of k

primes.
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Next, define the function

ΛR(n;H, `) :=
1

(k + `)!

∑

d|PH(n)
d≤R

µ(d)

(
log

R

d

)k+`

, (k = |H|, 0 ≤ ` < k), (2.4)

which is designed to approximate the indicator function for when PH(n) has at

most k + ` distinct prime factors. Let

θ(n) :=

{
log n if n is prime,

0 otherwise.
(2.5)

Now, as a consequence of Propositions 1 and 2 in [3], we have the following three

results. For H admissible (or equivalently S(H) 6= 0), h ≤ R ¿ N
1
2 (logN)−B(k)

and R,N → ∞, we have

∑

n≤N

ΛR(n;H, `)2 ∼ 1

(k + 2`)!

(
2`

`

)
S(H)N(logR)k+2`. (2.6)

For any hi ∈ H and S(H) 6= 0, we have for h ≤ Rε, R ¿ N
ϑ
2 −ε, and R,N → ∞,

∑

n≤N

ΛR(n;H, `)2θ(n+ hi) ∼ 1

(k + 2`+ 1)!

(
2`+ 2

`+ 1

)
S(H)N(logR)k+2`+1, (2.7)

and for h0 6∈ H and S(H ∪ {h0})) 6= 0,

∑

n≤N

ΛR(n;H, `)2 θ(n+ h0) ∼ 1

(k + 2`)!

(
2`

`

)
S(H ∪ {h0})N(logR)k+2`. (2.8)

We also need a result of Gallagher [2]: as h → ∞,

∑

1≤h1,h2,...,hk≤h
distinct

S(H) ∼ hk.

However, we now change notation slightly from [3]. Equation (2.1) is equivalent to

the conditions that |H| = k and H ⊂ {1, 2, . . . , bhc}. Further, Gallagher’s result

is unchanged if we restrict ourselves to the non-zero terms where H is admissible.

Hence Gallagher’s result can be restated as

∑

|H|=k
H⊂{1,2,...,bhc}
H admissible

S(H) ∼ hk

k!
, (2.9)
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where the k! is from the permutation of the elements of H which we no longer

sum over. Now, define, for ν a positive integer which in this paper is either 1 or 2,

S :=
∑

|H|=k
H⊂{1,2,...,bhc}
H admissible

(
2N∑

n=N+1

( ∑

1≤h0≤h
S(H∪{h0}) 6=0

θ(n+ h0)− ν log 3N

)
ΛR(n;H, `)2

)
. (2.10)

Applying (2.6)–(2.9) (and noting that once these equations are used the conditions

on admissibility may be dropped), a simple calculation gives

S ∼
∑

|H|=k
H⊂{1,2,...,bhc}

(
k

(k + 2`+ 1)!

(
2`+ 2

`+ 1

)
S(H)N(logR)k+2`+1

+
∑

1≤h0≤h
h0 6=hi,1≤i≤k

1

(k + 2`)!

(
2`

`

)
S(H ∪ {h0})N(logR)k+2`

− ν log 3N
1

(k + 2`)!

(
2`

`

)
S(H)N(logR)k+2`

)

∼ M(k, `, h)
1

(k + 2`)!k!

(
2`

`

)
Nhk(logR)k+2`, (2.11)

where

M(k, `, h) :=
2k

k + 2`+ 1

2`+ 1

`+ 1
logR+ h− ν log 3N. (2.12)

(Note that in the calculation above each of the sets H ∪ {h0} occurred k + 1

times in the summation.) Thus, there are at least ν + 1 primes in some interval

(n, n+ h], N < n ≤ 2N , provided that M(k, `, h) > 0. Taking R = N
ϑ
2 −ε, this is

true when

h >

(
ν − 2k

k + 2`+ 1

2`+ 1

`+ 1

(
ϑ

2
− ε

))
log 3N, (2.13)

which, on letting ` = b
√
k
2 c and taking k sufficiently large, gives

h >

(
ν − 2ϑ+ 4ε+O

(
1√
k

))
logN. (2.14)

Taking ν = 1 and ϑ = 1/2 proves (1.1).
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3. A new prime tuple detecting weight

The prime pairs we found in the last section are counted with the weight

ΛR(n;H, `)2, and this weight needs to be removed in order to count the num-

ber of prime pairs themselves. As usual, this is accomplished by using Cauchy’s

inequality. The problem with this approach (which stumped us for many years)

is that there are values of n with many divisors for which ΛR(n;Hk, `)
2 is ex-

ceptionally large, and these terms prevent us from obtaining the desired positive

proportion result. The solution of this problem was found by Pintz in [9], and is

based on a general property of the Selberg sieve. This property is that the Selberg

sieve weights effectively remove most of the numbers with many prime factors.

Therefore the n for which ΛR(n;Hk, `)
2 may be large are also numbers which

contribute very little to the total size of the asymptotic formulas in (2.6)–(2.8).

For further discussion of how the Selberg sieve removes numbers with small prime

factors and that the contribution from the few such numbers that are still unre-

moved is relatively small, see Section 10.3 of the recent book of Friedlander

and Iwaniec [1].

We define

P(x) :=
∏

pn≤x

pn. (3.1)

Let δ > 0 be a fixed constant that we can choose to be as small as we wish.

We want to remove from our earlier sums the terms when (PH(n),P(Rδ)) > 1.

We can do this with an error that is small when δ is small by Pintz’s work [9].

The results we need are immediate consequences of Pintz’s Lemmas 4 and 5 and

(2.6)–(2.8). We take ` ³
√
k which eliminates the ` dependence in the error terms

which follow. Suppose N c1 ≤ R ≤ N
1

2+δ (logN)−C1 where c1 and C1 are suitably

chosen constants depending on k. (Actually c1 = 1
5 and C1 taken sufficiently

large suffices.) If H is admissible with h ¿ logR and h → ∞ with N , we have

2N∑

n=N+1
(PH(n),P(Rδ))>1

ΛR(n;H, `)2 ¿k δ S(H)N(logR)k+2`. (3.2)

For 1 ≤ h0 ≤ h, write m = 1 when h0 ∈ H and m = 0 when h0 6∈ H. For ε > 0 if

S(H ∪ {h0}) 6= 0, then for N c1 ≤ R ≤ N
ϑ−ε
(2+δ) we have

2N∑

n=N+1
(PH(n),P(Rδ))>1

θ(n+ h0)ΛR(n;H, `)2 ¿k δ S(H ∪ {h0})N(logR)k+2`+m. (3.3)
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We now define a modified prime tuple approximation weight

Λ∗R(n;H, `, δ) :=

{
ΛR(n;H, `) if (PH(n),P(Rδ)) = 1,

0 otherwise.
(3.4)

We thus see that this weight tries to approximate prime tuples using only al-

most prime divisors, and is only insignificantly less effective than our original

approximation ΛR when δ is taken sufficiently small.

4. Detecting pairs of primes using the new approximation

We now replace S in (2.10) with

S∗ :=
∑

|H|=k
H⊂{1,2,...,bhc}
H admissible

(
2N∑

n=N+1

( ∑

1≤h0≤h
S(H∪{h0}) 6=0

θ(n+h0)−ν log 3N

)
Λ∗R(n;H, `, δ)2

)
. (4.1)

Using (3.3) and (3.4), the difference S∗ − S is

¿k δ
∑

|H|=k
H⊂{1,2,...,bhc}

(
S(H)

(
logR+ log 3N

)
+

∑

1≤h0≤h
h0 6=hi,1≤i≤k

S(H ∪ {h0})
)
N(logR)k+2`

¿k δNhk(logR)k+2` logN,

where we used that h ¿ logR. We conclude from this and (2.11) that

S∗ ∼ (M(k, `, h) +Ok(δ logN))
1

(k + 2`)!k!

(
2`

`

)
Nhk(logR)k+2`, (4.2)

as R,N → ∞, where N c1 ≤ R ≤ N
ϑ−ε
(2+δ) . Clearly if h = η logN and R, ϑ,

and k are chosen appropriately to make M(k, `, h) positive we can then choose

δ sufficiently small so that S∗ will also be positive. Then as in Section 2 we will

have produced pairs of nearby primes.

5. Removing the weight

The property that Λ∗R(n;H, `, δ) possesses that ΛR(n;H, `) lacks is that it is

never larger than some constant depending on k and δ times the size of the single
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term in its sum from the divisor d = 1. To see this, note that all prime factors

of PH(n) in the sum that forms Λ∗R(n;H, `, δ) are greater than Rδ, and thus the

number of squarefree divisors of PH(n) is at most 2
k log 3N
δ log R . Thus for N c1 ≤ R,

Λ∗R(n;H, `, δ) ≤ 2
k log 3N
δ log R

(k + `)!
(logR)k+` ¿k,δ (logR)k+`. (5.1)

We now proceed to obtain an upper bound for S∗ which counts small gaps

between consecutive primes without weights. First, letting

Θ(n, h) :=
∑

1≤h0≤h

θ(n+ h0), π(n, h) := π(n+ h)− π(n), (5.2)

we have

S∗ ≤
∑

|H|=k
H⊂{1,2,...,bhc}
H admissible

(
2N∑

n=N+1
Θ(n,h)>ν log 3N

Θ(n, h)Λ∗R(n;H, `, δ)2

)

¿k,δ (logR)2k+2` log 3N

2N∑

n=N+1
π(n,h)>ν

π(n, h)
∑

|H|=k
H⊂{1,2,...,bhc}
H admissible

(PH(n),P(Rδ))=1

1. (5.3)

Denote the inner sum by T (H, n), and let

Qν(N,h) :=

2N∑

n=N
π(n,h)>ν

1. (5.4)

We now have by Cauchy’s inequality that

2N∑

n=N+1
π(n,h)>ν

π(n, h)T (H, n) ≤ Qν(N,h)
1
2

(
2N∑

n=N+1

π(n, h)2T (H, n)2

) 1
2

. (5.5)

If n is an integer for which π(n+h)−π(n) > ν, then there must be a j such that

n < pj and pj+ν ≤ n + h. Thus pj+ν − pj < h and pj+ν − h ≤ n < pj , so that

there are less than bhc such integers n corresponding to each such gap. Therefore

Qν(N,h) ≤ h
∑

N<pj≤2N
pj+ν−pj≤h

1 +O
(
Ne−c

√
logN

)
, (5.6)
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where we have used the prime number theorem with error term to remove the

prime gaps which overlap the endpoints. (This is explicitly shown in [5]). We will

prove below that, for 2 ≤ h ≤ logR,

2N∑

n=N+1

π(n, h)2T (H, n)2 ¿k,δ

(
h

logR

)k

N, (5.7)

which on combining with (5.3) and (5.5) produces the upper bound

S∗ ¿k,δ (logR)2k+2`(log 3N)Qν(N,h)
1
2

(
h

logR

) k
2

N
1
2 . (5.8)

Together with (4.2) and (5.6) this provides the desired lower bound for the un-

weighted number of small prime gaps.

To prove (5.7), we recall that the main theorem of Selberg’s upper bound

sieve (Theorem 5.1 of [8] or Theorem 2 in §2.2.2 of [7]) gives for any set H and

δ < 1
2

2N∑

n=N+1
(PH(n),P(Rδ))=1

1 ≤ |H|!S(H)

(logRδ)|H|N(1 + o(1)), (N → ∞). (5.9)

Writing

π(n, h) =
∑

1≤h′≤h
n+h′ prime

1,

we see that the left-hand side of (5.7) is

¿
∑

1≤h′,h′′≤h

∑

|Hi|=k
Hi⊂{1,2,...,bhc}
Hi admissible

i=1,2

2N∑

n=N+1
(PH1 (n),P(Rδ))=1

(PH2
(n),P(Rδ))=1

n+h′, n+h′′ prime

1,

The conditions on the inner sum are weakened if we let H0 = {h′}∪{h′′}∪H1∪H2

and require (PH0(n),P(Rδ)) = 1, and therefore we obtain the upper bound

2k+2∑

r=k

∑

|H0|=r
H0⊂{1,2,...,bhc}

2N∑

n=N+1
(PH0

(n),P(Rδ))=1

1.

By (5.9) and (2.9) this is, for 2 ≤ h ≤ logR,

¿k

2k+2∑

r=k

∑

|H0|=r
H0⊂{1,2,...,bhc}

S(H0)

(logRδ)r
N ¿k,δ N

2k+2∑

r=k

(
h

logR

)r

¿k,δ

(
h

logR

)k

N,

which is (5.7).
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6. Proof of the Theorems

We now take R = N
ϑ−ε
(2+δ) , h = η logN , and 2

logN ≤ η ≤ 1
5 so that h ≤ logR.

Combining (4.2) and (5.8) we obtain

(M(k, `, h) +Ok(δ logN))

(
h

logR

) k
2 N

1
2

logN
≤ C(k, δ)Qν(N,h)

1
2 , (6.1)

where C(k, δ) > 0 is a (large) constant depending on k and δ.

We first prove Theorems 1 and 4. Taking ` = b
√
k
2 c, we find

2k

k + 2`+ 1

2`+ 1

`+ 1
> 4− c2√

k
, k ≥ 4,

for a suitable constant c2 (A short calculation shows c2 = 8 works here.) Hence

from (2.12) we have

M(k, `, h)+Ok(δ logN) >

(
4− c2√

k

)(
ϑ− ε

2 + δ

)
logN+h− ν log 3N−c3(k)δ logN

>

(
η + (2ϑ− ν)− 4ε− c2√

k
− c4(k)δ

)
logN. (6.2)

Take ϑ = 1
2 and ν = 1 for Theorem 1, or ϑ = 1 and ν = 2 for Theorem 4. Hence,

given a fixed η > 0 we can first choose k = k(η) large enough and then ε = ε(η)

and δ = δ(η) small enough so that

M(k, `, h) +Ok(δ logN) >
η

2
logN.

From (6.1) we immediately obtain Qν(N,h) Àη N , and (5.6) completes the proof.

For the proof of Theorem 3 we take ν = 1, and note that if ϑ ≥ ϑ0 > 1
2 ,

then we do not need η to make the right-hand side (6.2) positive; we only need

to make k large enough and then δ small enough to accomplish this. Hence, with

k = k0(ϑ0), ` = `0(ϑ0), and δ = δ0(ϑ0) we have

M(k, `, h) +Ok(δ logN) Àk,δ logN.

From (6.1) we then obtain Q1(N,h) À ηk(ϑ0)N , and then from (5.6) the first part

of Theorem 3 follows with m(ϑ0) = k(ϑ0)− 1. Next, we take k = 7 and ` = 1 in

(2.12) and obtain

M(7, 1, h) =
21

10
logR+ h− log 3N
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and this is À logN independent of h provided ϑ ≥ ϑ0 where

2

(
ϑ0 − ε

2 + δ

)
>

20

21
= 0.95238 . . . .

Hence on taking ε and δ sufficiently small depending on ϑ0 > .953, then for

N ≥ N0(ϑ) we have as above Q1(N,h) À η7N , and hence by (5.6) we conclude

P (2N, η) À η6. For the final part of Theorem 3 we wish to take k = 6 in (2.12)

as above but this just fails to give a positive result. However by using a linear

combination of ΛR’s with k = 6 and ` = 0 and ` = 1 we are able to obtain a

positive result here provided ϑ0 > .971 as was done in [3]. The proof then follows

as above with minor changes.

Finally, we prove Theorem 2. This is an almost immediate consequence of

any sieve upper bound for prime pairs and the special case k = 2 of Gallagher’s

Theorem. Since the prime pair p′ = p + k corresponds not only to the prime

2-tuple (n, n+ k) but any shifted tuple (n+ j, n+ j + k), we have

∑

N<p,p′≤2N
0<p′−p≤h

1 <
1

h

∑

|H|=2
H⊂{1,2,...,b2hc}

∑
N
2 <n<3N

(PH(n),P (N
1
2 ))=1

1,

which by (5.9) is

¿ N

h(logN)2

∑

|H|=2
H⊂{1,2,...,b2hc}

S(H) ¿ h
N

(logN)2
,

by (2.9), which is equivalent to Theorem 2.
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