Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

 



Math ImageryThe connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius bands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

Jump to one of the galleries

Share this page




Share this


Explore the world of mathematics and art, share an e-postcard, and bookmark this page to see new featured works..

Home > 2011 Mathematical Art Exhibition
Click to view full size image

"Sierpinski Theme and Variations," by Larry Riddle (Agnes Scott College, Decatur, GA)

Counted cross stitch on fabric (25 count per inch), 13.5" x 13.5", 2009

The Sierpinski Triangle is a fractal that can be generated by dividing a square into four equal subsquares, removing the upper right subsquare, and then iterating the construction on each of the three remaining subsquares. That is our “Theme”, shown in the upper left. The “Variations” arise by exploiting symmetries of the square. The three variations in this piece were generated by rotating the upper left and lower right subsquares at each iteration by 90 or 180 degrees, either clockwise or counterclockwise. The self-similarity of the fractals, illustrated by the use of three colors, means that you can read off which rotations were used from the final image. Each design shows the construction through seven iterations, the limit that could be obtained for the size of canvas used. --- Larry Riddle (http://ecademy.agnesscott.edu/~lriddle/)

nau-2011.jpg niemeyer-2011.jpg riddle-2011.jpg rousseau-2011.jpg sammis-2011.jpg