Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

 



Math ImageryThe connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius bands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

Jump to one of the galleries

Share this page




Share this


Explore the world of mathematics and art, share an e-postcard, and bookmark this page to see new featured works..

Home > 2014 Mathematical Art Exhibition
Click to view full size image

"Enigmatic Plan of Inclusion I, " by Conan Chadbourne (San Antonio, TX)

24" x 24", archival inkjet print, 2013
Best photograph, painting, or print
2014 Mathematical Art Exhibition

"My work is motivated by a fascination with the occurrence of mathematical and scientific imagery in traditional art forms, and the frequently mystical or cosmological significance that can be attributed to such imagery. "

These images are investigations of the subgroup structure of the icosahedral group (A5). At the center of each image is a graphical representation of A5, as formed by orientation-preserving pairs of reflections in circles and lines in the plane. This is surrounded by similar graphical representations of the seven conjugacy classes of (proper, non-trivial) subgroups of A5, with the trivial group depicted as the space outside of the large circular frame. The interstices between the group images indicate the relationships of inclusion between the different groups, with colors being used to distinguish maximal subgroup relationships, and small graphical markers used to indicate the particular numbers of conjugates involved in each relationship. --- Conan Chadbourne (http://www.conanchadbourne.com)

bodner14-11n9stars.jpg burns14-visualproof.jpg chadbourne14-inclusion1.jpg chadbourne14-inclusion2.jpg chamberland-french14-lorenz.jpg