Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

 



Math ImageryThe connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius bands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

Jump to one of the galleries

Share this page




Share this


Explore the world of mathematics and art, share an e-postcard, and bookmark this page to see new featured works..

Home > Gwen L. Fisher :: Woven Beads
Click to view full size image

"Sierpinski Tetrahedron (View II)" in glass bugle beads, size 11/0 and 8/0 seed beads, Fireline thread, by Gwen L. Fisher, California Polytechnic State University, San Luis Obispo and beAd Infinitum

There are several ways to build a polyhedron with beads. One technique that will always work is to align the hole of a bead along each edge of the polyhedron. Then, the thread connects the beads at the vertices of the polyhedron. The most stable polyhedron is the tetrahedron because it is made of all triangles. In a beaded tetrahedron, there are three sets of beads in each loop, like the three sides of a triangle. Any regular tetrahedral beaded bead will naturally require six identical sets of beads, one set for each of the six edges of the tetrahedron. In this case, a set is three beads: a short, a long and a short. Rather than give an example of the simplest tetrahedron, I have used a more complex design based on the structure resulting from the third iteration in the construction of the "Sierpinski Tetrahedron" with its 64 little tetrahedrons. Adding a bead at each interior vertex is necessary to stabilize the structure and make it more rigid. --- Gwen L. Fisher (www.beadinfinitum.com)

Mobius2.jpg OctaCluster.jpg SierpenskiThree2.jpg SierpTetr.jpg 72pencils.jpg