Math ImageryThe connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius ands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

Share this page


Jump to one of the galleries



Share this


Explore the world of mathematics and art, share an e-postcard, and bookmark this page to see new featured works..

Home > 2012 Mathematical Art Exhibition
Click to view full size image

"Hybrid 101," by Michael Field (University of Houston, TX)

24" x 24" (framed), Archival inkjet print, 2011

Hybrid 101 is a representation of an invariant measure for a dynamical system on a 2-torus with deterministic and random components. Deterministic dynamics is given by the product of two identical circle maps with topological degree 2 ('doubling maps') together with a random component which is a place dependent iterated function system: probabilities and direction and size of jumps depend on the position on the torus. Hybrid dynamics combining deterministic dynamics with an iterated function system was first studied mathematically by Kobre and Young in the context of extended dynamical systems on the line. In Hybrid 101, dynamics is defined by doubly 1-periodic maps on the plane and we reduce mod the integer lattice to obtain dynamics on a torus. We lift the measure back to the plane to obtain a repeating pattern. Appearances can be deceptive: the only symmetries of the repeating pattern are translations (the pattern is of type p1) and all the lines are straight. --- Michael Field (University of Houston, TX, http://www.math.uh.edu/~mike)

friedman-4rtangles-12.jpg fisher-starweaves-12.jpg field-hybrid101-12.jpg fathauer-fractaltilingspirals-12.jpg escudero-nueve-12.jpg