The connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius bands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

"Starry Pines," by Charles Redmond (Mercyhurst University, Erie, PA)16" X 16", Generated by code written in the Context Free Art language, no photo-editing software used, 2011

Every program written in the Context Free Art language may be considered to be a context free grammar for creating images. Thus, when one programs in this language, one is "inventing" grammars. Any image produced with such a grammar may be considered to be a legal sentence in the grammar. If randomness is introduced into the program, then there are many different legal sentences or images, and one is producing generative art. When I created Starry Pines, I was studying tree creation with Context Free Art while at the same time experimenting with a technique of mine for creating star clusters and galaxies. I put them together for this work, along with a recursive icy swirl added to the rules for the trees. -- Charles RedmondMay 16, 2013

"White hyperbolic disk," by Gabriele Meyer (University of Wisconsin, Madison)20" x 17" x 17", Polyester yarn and shaped line, 2012

This started out as a white disk crocheted in a spiral fashion. By making more than the necessary stitches, it takes on this characteristic wavy form. The hyperbolic disk is the most basic form of a hyperbolic surface, other possible shapes include blossoms and algae. I particularly like the play of light and shadow on this hyperbolic surface. That's the reason why I made this one just pure white. The holes created by double and triple stitches allow further light and shadow play. -- Gabriele MeyerMay 16, 2013

"Blue Sun," by Mojgan Lisar (Enschede, The Netherlands) and Reza Sarhangi (Towson University, MD)16" x 16", combination of hand painting and computer work, 2012

The Blue Sun is a collage of two different Persian works of art, both with deep mathematical roots: Tiling and Tazhib. The mosaic design on the back is a two-level self-similar tiling that has been made based on the decagram. This structure possesses a 10-fold rotational symmetry. This symmetry can be expanded in all directions using the five Sâzeh motifs introduced in "Polyhedral Modularity in a Special Class of Decagram Based Interlocking Star Polygons" by Reza Sarhangi, the 2012 Bridges Proceedings. The tiling at the center presents the tiling of a decagram that follows the same rules as the larger tiling in the back. The front image is a decagram Tazhip. In a traditional Persian Tazhib, one can find mathematical ideas and concepts, such as symmetries, spirals, polygons and star polygons. -- Mojgan Lisar and Reza Sarhangi May 16, 2013

"Inlaid Wooden Box of Makoto Nakamura's Tessellations," by Kevin Lee (Normandale Community College, Saint Paul, MN)4" x 4" x 4", Wood: Cherry, Maple, Walnut, Oak, Butternut, Mahogany, 2012
Best textile, sculpture, or other medium, 2013 Mathematical Art Exhibition

Makoto Nakamura has created a collection of tessellation designs that rival M. C. Escher’s collection. The six designs on this box represent the asymmetric, isohedral Heesch tile types: TCCTC, TG1G2TG2G1, TCCTGG, C3C3C3C3C3C3, and CC4C4C4C4. -- Kevin LeeMay 16, 2013

"540º," by Ayelet Lindenstrauss Larsen (Indiana University, Bloomington)1" x 8" x 8", Cotton, silk, dissolvable muslin, 2003

This Möbius band is twisted three times, each time by 180 degrees, before its short sides are attached to each other. Topologically, it is the same as the usual Möbius band where the band is twisted only once before attaching the short sides to each other; it is just embedded in 3-space in a different way. The edge of a Möbius band consists of one long circle. If you follow the edge of this Möbius band, you will go through the colors of the rainbow, from red to purple, and then transition to red through red-purple and begin the cycle again. -- Ayelet Lindenstrauss LarsenMay 16, 2013

"Meandering Eightfold Path," by Margaret Kepner (Washington, DC)Flat: 18" x 18"; Folded: 3" x 6" x 0.5", Archival Inkjet on Paper, 2012

This work is a modified version of an earlier design – The Eightfold Path. Colors have been added, and the flat 2D print has been deconstructed into a folding book format. The underlying design is a visual presentation of the five non-isomorphic groups of order eight: C8, C2 x C4, C2 x C2 x C2, D4, and Q8. It employs a visual vocabulary derived from a traditional quilt pattern, Drunkard’s Path. Each of the small shapes used in the design is a quarter circle in a square, scaled so that its area equals the square’s residual area. The 36-page book structure is created from a single sheet of paper through a series of cuts and folds. A continuous meander folding path is followed, with varying length fold-sequences, and no beginning nor end. When it is fully folded up, the book assumes a double-square footprint. A smaller-scale meander path, which would result in a continuous 144-page book, is expressed through color accents. -- Margaret Kepner May 16, 2013

"Super Buckyball of Genus 31," by Bih-Yaw Jin (National Taiwan University, Taipei)20" x 20" x 20", Plastic beads, 2011

Joining with students and teachers of the Taipei First Girls High School in November 2011, we made two bead models of super buckyball, a polyhedron of genus 31. Each vertex in this model is itself a buckyball punched with three holes and then connects to three neighbored vertices by three shortest carbon nanotubes. We can also view structure as the second level Sierpinski buckyball, which can be extended arbitrarily to infinity. -- Bih-Yaw JinMay 16, 2013

Fractal Cylinder 2, by Daniel Gries (Hopkins School, New Haven, CT)11.5" x 22", Giclee print from JavaScript-generated digital image, 2012

In Fractal Cylinder 2, curves are drawn along waist curves, colored by a radial gradient. Low alpha values create differing densities and transparency. -- Daniel GriesMay 16, 2013

"Quejido Design III," by Gary Greenfield (Prof Emeritus, University of Richmond, VA)10.5" x 10.5" (unframed), Digital Print, 2012

Between 1968-1972 Spanish artist Manuelo Quejido collaborated with computer programmers at the University of Madrid in order to execute a series of state-of-the-art computer generated “sequence” designs consisting of patterns of disks. As an homage, Quejido Design III realizes one of these patterns using state-of-the-art agent based methods. Here, agents are virtual ants modeled after the species T. albipennis that collect dispersed grains of sand in order to form circular nest walls. By using two different colors for sand grains and by assigning to each virtual ant a center, radius, and color, a uniform density grid of sand grains self-organizes into a pattern which, up close, has no color symmetry, but from a distance is perceived of as being color preserving under various symmetry operations. -- Gary Greenfield May 16, 2013

"Window into Infinity: A Sample of the Murhombicuboctahedron," by S. Louise Gould (Central Connecticut State University, New Britain)6.5" x 6.5" x 6.5", Embroidery on cotton fabric, 2012

This is an extension of the work I have done with fabric polyhedra. "The Symmetries of Things" written by Conway, Burgiel and Goodman-Strauss has provided many pathways to explore and it was the inspiration for this piece. This Archimedean infinite polyhedra is constructed of regular hexagons and squares. It illustrates the symmetry *642. Each vertex has 4 squares and one hexagon surrounding it. This model uses squares of four colors to show how the model moves into space. Each of the modules is constructed from a "net" of embroidered squares and hexagons. The nets were designed on Geometer's Sketchpad then digitized using 4-D Professional Software and stitched on a Viking Topaz embroidery sewing machine. The pictures show the object from three different directions. -- S. Louise GouldMay 16, 2013

"Tessellation Evolution," by Susan Goldstine (St. Mary's College of Maryland, St. Mary's City) 18" x 15", Glass beads, gold-plated glass beads, onyx beads, gold-plated clasp, thread, 2012
Honorable Mention, 2013 Mathematical Art Exhibition

From one end of this necklace to the other, the design evolves through 16 different tessellations of the cylinder by congruent tiles in four colors. The strips of beads along the top and bottom of the frame, woven out of larger beads for clarity, exhibit the 16 tiles underlying the bead tessellations. The body of the necklace is a bead crochet rope. To construct the design, I manually colored a planar hexagonal grid of beads using the symmetry constraints imposed by crocheting the beads into a spiral. To make the necklace, I strung 4307 beads in the order dictated by the design onto five spools of thread, then crocheted the bead rope using a 1.1 mm hook. The caps at the end of the tube are woven with an additional 210 beads. -- Susan GoldstineMay 16, 2013

"Duals," by Robert Fathauer (Tessellations, Phoenix, AZ)12" x 6" x 6", Ceramics, 2012

The cube and octahedron are duals of each other. In these two pieces, an octahedral frame encloses a cube and a cubic frame encloses an octahedron. The contrasting colors in the frames and enclosed polyhedra are due to the fact that they are made from two different types of clay. Neither was glazed, so the natural appearance of the fired clays is seen. -- Robert FathauerMay 16, 2013

"Mandelbrot's Chandelier," by Jeffrey Stewart Ely (Lewis and Clark College, Portland, OR)24" x 18", Digital print on archival paper, 2012

The spherical chandelier is composed of squarish lenses. Inside the chandelier is a cubical object that has been painted with the Mandelbrot set. Each of the lenses gives us a different view of this object. This interior object and the individual lenses are all variations of the quartic surface, x^4 + y^4 + z^4 = 1. The image was constructed using the ray tracing technique and required the solution of over a billion quartic equations, At^4 + Bt^3 + Ct^2 + Dt + E = 0, as the individual rays through each pixel were followed into this mathematical world of quartic surfaces. Snell's law was used to correctly model the refraction of the rays as they passed through the lenses. Finally, the background also shows a portion of the Mandelbrot set. -- Jeffrey Stewart ElyMay 16, 2013

"The {3,8} Polyhedron with Fish," by Doug Dunham (University of Minnesota, Duluth)18" x 18" x 18", Color printed cardboard, 2012

The goal of my art is to create aesthetically pleasing repeating patterns related to hyperbolic geometry. This is a pattern of fish (inspired by M.C. Escher's Circle Limit III) on the regular triply periodic polyhedron composed of equilateral triangles meeting 8 at each vertex, which can be denoted by the Schläfli symbol {3,8}. It is formed from octahedral hubs which have octahedral struts connecting the hubs; the struts are on alternate faces of the hubs. This polyhedron approximates Schwarz' D-Surface which is the boundary between two congruent, complementary solids, both in the shape of a "thickened" diamond lattice (the hubs are the carbon atoms and the struts are the atomic bonds). There are fish of four colors. The blue fish all swim around the "waists" of the struts. The yellow, green, and red fish swim along lines that approximate the set of Euclidean lines that are embedded in Schwarz' D-Surface. In the image, the yellow fish swim right to left, the green fish swim from lower left to upper right, and the red fish swim from upper left to lower right. -- Doug DunhamMay 16, 2013

"CONTINUATIONS - Recursion Study in Wood," by Jeannye Dudley (Atlanta, GA)18" x 18" x 4", Basswood, 2012

The visual continuous curves were generated parametrically by a recursive design pattern developed based on simple a square motif and a replication rule (ratio) of 1 to 9. At first glance the piece appears flat; this effect is achieved through the black background. All the visual clues that the eye searches for to determine depth are lost in the dark monolithic background. The success in this piece is that it encourages the observer to wonder where does the pattern begin and end. The pattern becomes a path of CONTINUATIONS by providing an overlap at the initial four squares. This recursive design pattern provides the starting point for many other architectural investigations, like a stair case, a roof canopy or a wall panel system. The excitement is - integration of math - art - architecture. -- Jeannye DudleyMay 16, 2013