Math ImageryThe connection between mathematics and art goes back thousands of years. Mathematics has been used in the design of Gothic cathedrals, Rose windows, oriental rugs, mosaics and tilings. Geometric forms were fundamental to the cubists and many abstract expressionists, and award-winning sculptors have used topology as the basis for their pieces. Dutch artist M.C. Escher represented infinity, Möbius ands, tessellations, deformations, reflections, Platonic solids, spirals, symmetry, and the hyperbolic plane in his works.

Mathematicians and artists continue to create stunning works in all media and to explore the visualization of mathematics--origami, computer-generated landscapes, tesselations, fractals, anamorphic art, and more.

Share this page


Jump to one of the galleries



Last additions
Singer.jpg
"Universe Before Big Bang," by Clifford Singer, Clark County School District, Las Vegas, NV copyright 1989Acrylic on plexiglass, relief, 36" x 36" x 2". "This painting as a model entitled, Universe Before Big Bang, 1989, is intended to reconstruct the universe prior to the Big Bang. My concept in 1989 was to take a snapshot of the universe encapsulated in a non-Euclidean square. Thus, matter is then present before the Big Bang. Origins of the cosmos are found in supersymmetries and further understanding of concepts for their elucidation. As an artist and geometer 'infinity' has taken an important place in my life in terms of abstraction. My art combines both ancient and modern mathematical foundations ranging from Pythagoras to Einstein." --- Clifford Singer, Artist/Fine Art Teacher, Clark County School District, Las Vegas, NVApr 14, 2009
Selikoff2.jpg
"Star Birth," by Nathan Selikoff (2007)Lightjet print, 24" x 18". "Underlying this artwork is a two-dimensional plot of the 'typical behavior' of a chaotic dynamical system, a strange attractor. The base image is computed with a set of iterated functions, which serve as a numerical approximation to integrating the underlying differential equations. The iterated functions contain four coefficients, which are controlled by sliders in interactive custom software and control the appearance of the attractor. Once the particular form is chosen, it is rendered as a high-resolution 16-bit grayscale image, colorized using gradient mapping and edited to enhance contrast, control composition, and add special effects. I love experimenting in the fuzzy overlap between art, mathematics, and programming. The computer is my canvas, and this is algorithmic artwork--a partnership mediated not by the brush or pencil but by the shared language of software. Seeking to extract and visualize the beauty that I glimpse beneath the surface of equations, I create custom interactive programs and use them to explore algorithms, and ultimately to generate artwork." --- Nathan Selikoff, Artist, Orlando, FLApr 14, 2009
Selikoff1.jpg
"Chinese Dragon," by Nathan Selikoff (2007)Lightjet print, 18" x 24". "Underlying this artwork is a two-dimensional plot of the 'typical behavior' of a chaotic dynamical system, a strange attractor. The base image is computed with a set of iterated functions, which serve as a numerical approximation to integrating the underlying differential equations. The iterated functions contain four coefficients, which are controlled by sliders in interactive custom software and control the appearance of the attractor. Once the particular form is chosen, it is rendered as a high-resolution 16-bit grayscale image, colorized using gradient mapping and edited to enhance contrast, control composition, and add special effects. I love experimenting in the fuzzy overlap between art, mathematics, and programming. The computer is my canvas, and this is algorithmic artwork--a partnership mediated not by the brush or pencil but by the shared language of software. Seeking to extract and visualize the beauty that I glimpse beneath the surface of equations, I create custom interactive programs and use them to explore algorithms, and ultimately to generate artwork. " --- Nathan Selikoff, Artist, Orlando, FLApr 14, 2009
Sazdanovic.jpg
"Caught in a Dual Net," by Radmila Sazdanovic, The George Washington University, Washington, DC (2008)Digital print, 16" x 16". "This computer graphic represents three superimposed tessellations. The edges of a tessellation (6,6,7) are hidden below two nets consisting of tessellations (7,7,7) and (3,3,3,3,3,3,3), both dual to the original one. My inspiration stems from the rich geometric structures found in tessellations of the hyperbolic plane. Mathematical objects can be manipulated in many ways (superimposing, dualizing, breaking symmetry) to create aesthetically pleasing computer graphics brought to life by the unusual combination of colors." --- Radmila Sazdanovic, Graduate student, The George Washington University, Washington, DC
Apr 14, 2009
McBurney1.jpg
"Ellipse Lace," by Susan McBurney (2005)Computer-generated graphic art; digital print, 14" x 14". "This complex and intricate design is created very simply from just one element--the ellipse. The width and height are varied and the sets are rotated, but the result is not at all what one might expect. In particular, the interior circles are generated entirely by the interaction of the parts. There are no circles drawn at all and the complexity of the design is entirely natural and unpredicted. It is my intention to use the computer as a tool to generate designs that are not only aesthetically pleasing, but that also reveal the order, structure and beauty inherent in mathematical objects. Additionally, if an attractive design can be made from the simplest of elements, then the generating process itself becomes an object of beauty as well. Complexity from a simple beginning via an elemental algorithm is a common, fascinating and universal process."--- Susan McBurney, Western Springs, ILApr 14, 2009
Lara-Dammer2.jpg
"Five Left Tetrahedral Cosets," by Francisco Lara-Dammer, Indiana University, Bloomington (2008)Digital print, 20" x 20". "This is a Klein diagram (named after the nineteenth-century German mathematician Felix Klein) that represents A5, the group of symmetries of the icosahedron. Another way of describing A5 is as the alternating group on five elements, namely, the group of all even permutations of five entities. This diagram emphasizes A5's tetrahedral subgroup A4 (the group of symmetries of the tetrahedron, also the group of even permutations of four entities), which has twelve elements, plus the four left cosets of A4. The general diagram is obtained by centrally projecting an icosahedron onto a sphere (with the center of one face projected onto the north pole) and then making a stereographic projection of the sphere down onto a horizontal plane. Each coset has been identified with one color. The circle contains a hundred and twenty regions from which sixty correspond to the dark blue background, and the other sixty are split with the five left cosets. The reason I have realized Klein diagrams is to understand more clearly the beauty of Group Theory." --- Francisco Lara-Dammer, Research assistant. Center for Research on Concepts and Cognition, Indiana University, Bloomington, INApr 14, 2009
powers1.jpg
"The Path Crumpled Paper Takes," by Jeanette Powers, Rockhurst University, Kansas City, MO (2008)Ink and paper, 11" x 15". "A classic example to explain fractal dimension is the piece of crumpled paper. In this example, one takes a sheet of paper to be 2 dimensional (ignoring the very thin thickness). This then is a good representation of the mathematical plane. However, if we crumple the paper into a ball, as seen below the frame, it seems to take on a volume, or third dimension. Now, there is a meta-level to the inter-dimensionality of this system. If one flattens the paper back into the two dimensional sheet of paper, then one can draw a continuous line ( in blue) of all the folds that happened during the crumpling process. Now a line is considered to be one dimensional, but is the space this line takes up really best described with only one dimension?" --- Jeanette Powers, Student, Physics and Math Department, Rockhurst University, Kansas City, MOApr 14, 2009
Niemeyer-vertical.jpg
"Uniqueness--and Infinity," by Jo Niemeyer (2008)Prints, 20" x 20". "To realize the concept of 'uniqueness' in art is a true challenge. And no easy task for an artist. This could be said for the concept 'infinity' as well. As a visual experiment with both of them, this problem is shown systematically in two steps in the following two graphics: The top image shows the overlapping of two geometrical grids. The size of the mesh corresponds to the relation 1 : 0.625. Or the Fibonacci numbers 5 and 8. There are nine grid elements, which overlap accurately. Furthermore the constellations of overlappings reiterate themselves. The two grids behave periodically. There is infinity - but no uniqueness. The bottom image shows the overlapping of two grids as well. Very similar to the top image, but the size of their meshes correspond here exactly to the relation of the golden section. 1 : 0.6180339... As the last number is an irrational number, the two grids behave aperiodically. Only the upper left two grid elements overlap accurately. Each overlapping constellation of the elements is unique, even if the size of the grid would be extended to infinity!" --- Jo Niemeyer, Freelance artist, Schluchsee, GermanyApr 14, 2009
powers3.jpg
"Pulse," by Jeanette Powers, Rockhurst University, Kansas City, MO (2008)Acrylic, 6" x 24". "This piece explores Hausdorff Dimension. Chaos and dynamical systems collapse in ordered ways. A nebula coalescing into a galaxy, a frozen molecule tossing through the tumult and falling as a six-sided crystal, the Mandelbrot Set. As an artist, I've tried to use chaotic interactions as a tool to express the limitations of our control and the beauty of chaos. This painting uses cellophane crushed into wet pigment to create the random patterning of the surface. The result is a chaotic landscape reminiscent of leaves, cells, rivulets, the cracked dirt of arid lands. All chaotic processes which leave a recognizable mark. The pattern is not exact, but exhibits self-similarity." --- Jeanette Powers, Student, Physics and Math Department, Rockhurst University, Kansas City, MOApr 14, 2009
Kim.jpg
"Valley of Serenity," by Ghee Beom Kim (2007)Digital print, 12" x 12". "'Valley of Serenity' has been created using semicircles based on fractal concept with a touch of Op art element. Within a semicircle two smaller semicircles fit in. This process (iteration) continues on until it is visually meaningful. The resulting image conjures up an extraterrestrial terrain of a faraway planet. The smaller semicircles bear a resemblance to a horizon by giving it the effect of perspective." --- Ghee Beom Kim, Freelance artist, Sydney, Australia
Apr 14, 2009
maslanka1.jpg
"The Empty Paradox," by Kaz Maslanka, D3 Technologies (2008)Digital print, 16" x 20". "The equation is the familiar function of x equal to 1/x which yields a hyperbolic curve when graphed and results an asymptote when x = 0. Compassion multiplied by Wisdom is equal to 1 over X as the limit of X approaches Buddha's mind. Buddhist philosophy tells us that Buddha's mind is emptiness yet the philosophy also tells us that emptiness is different than nothingness or zero. In fact it is quite paradoxical for we are told that emptiness is very much something. This piece also uses visual imagery for poetic expression with Buddhist symbolism of flexibility and eternity represented by bamboo and pine trees respectively. As an artist, my interest in correlating experience through language spawned my desire to study mathematics and physics. I am currently pursuing my interest in using mathematics as a language for art." --- Kaz Maslanka, Mathematical poet and Polyartist, D3 Technologies, San Diego, CAApr 14, 2009
Krasek3.jpg
"Interlaced Hearts," by Matjuska Teja Krasek (2001)Digital print, 12.6" x 11.9". Kraskek's interest is focused on the shapes' inner relations, on the relations between the shapes and between them and a regular pentagon. Her artworks also illustrate properties such as golden mean relations, self similarity, ten- and fivefold symmetry, Fibonacci sequence, inward infinity and perceptual ambiguity. She employs contemporary computer technology as well as classical painting techniques.

"The implicit decagon constituted of five smaller decagons expresses tenfold and fivefold rotational symmetry. The image where golden heart-like shapes are exposed shows self-similarity, the richness of relations between the decagons, pentagonal stars, Penrose rhombs, kites and darts with the golden ratio used several times as a scale factor." --- Matjuska Teja Krasek, Freelance artist, Ljubljana, Slovenia, EU
Apr 14, 2009
Konjevod3.jpg
"Wave (32)," by Goran Konjevod, Arizona State University, Tempe, AZ (2006)First Prize, 2009 Mathematical Art Exhibition. One folded square sheet of paper, 10" x 10" x 5". "The wave is one of the pleat tessellations that continues to amaze me even years after I first folded it. The peculiar symmetry and the tension caused by locking the edges causes two of its corners to bulge in opposite directions, while the remaining two corners remain fairly flat. As in the simple bowl, the pleat sequences all begin at the edges and proceed towards the center of the sheet, but the difference is that all horizontal pleats are oriented the same way, and similarly all the vertical pleats." --- Goran Konjevod, Assistant Professor of Computer Science and Engineering, Arizona State University, Tempe, AZApr 14, 2009
Husain.jpg
"Spiral Squares," by Iftikhar Husain, University High School, Newark, NJ (2008)Digital print, 8" x 8". "The artwork 'Spiral Squares' was originally created on a TI-84 Plus graphing calculator. The design was uniquely created by using two equations only of linear function with restricted domain. These two equations have different parameters of the equation of each line segment, such as slope, y-intercept, domain x-left value, and domain x-right value, organized in a table. Each line segment is drawn by picking up its respected parameter value from the table. Once all the values from the table are exhausted the complete spiral square will appear on the calculator screen. The artwork is simple but truly illustrates the mathematical concepts. A single Spiral Square was then created on a computer using Geometer Sketchpad software. The artwork, shown here, is the simple translation effect of the single spiral square horizontally and vertically thrice." --- Iftikhar Husain, Mathematics Teacher and Tech-Coordinator, University High School, Newark, NJApr 14, 2009
hart-2.jpg
"(10,3)-a Twice," by George Hart, Stony Brook University, Stony Brook, NY (2008)Nylon (selective laser sintering), 3.5" x 3.5" x 3.5". "This is a sculptural interpretation, made by selective laser sintering, of two copies of the (10,3)-a lattice. Modern layered fabrication processes allow the construction of two interlocked components which are free to move slightly relative to each other, within the constraints of their being linked. The two copies are congruent, though mirror images. Each interpenetrates the tunnels of the other in a surprisingly complex manner. The 5x5x5 selection from the infinite lattice was made in such a way that the sculpture can stand vertically on a corner. See more works at http://www.georgehart.com." --- George Hart, Research Professor, Stony Brook University, Stony Brook, NYApr 14, 2009
536 files on 36 page(s) 26