Project: Vaccination and COVID-19.

Introduction At the time of this writing, the FDA has just approved the Pfizer/BioNTech COVID-19 vaccine
for use in the United States via an Emergency Use Authorization, and similar authorization for the Moderna
vaccine is expected imminently. Initial vaccination of healthcare workers and nursing home residents has
begun. In this project we will model vaccination programs for COVID-19 and look at factors that may
increase their success.

COVID-19 vaccines might work in several different ways: they can be disease-modifying, acting to prevent
severe disease and death and limiting the number of infected people who require hospitalization, speeding
recovery, and decreasing infectiousness. Vaccines may also reduce susceptibility among uninfected people who
have been vaccinated; such vaccines are termed “preventative”. A vaccine may have both disease-modifying
and preventative attributes, and in this project we will consider such vaccines. While initial Phase 3 studies
of the Pfizer and Moderna vaccines have shown high “efficacy” (more than 90%), precise information about
the specifics of their preventative and disease-modifying attributes are not yet well understood. The FDA
initially established a minimum efficacy threshold of 50% for COVID-19 vaccines, comparable to influenza
vaccines but much lower than the efficacy of nearly every other widely used vaccine.

PART I: Model without vaccination. We will begin with an expanded SEIR (susceptible-exposed-
infective-removed) compartment model for COVID-19, where the compartment of infective individuals is
expanded into four distinct compartments—asymptomatic, mild/moderate, severe, and critical. Initially our
model will not include vaccination, so as to have a baseline against which to compare vaccination strategies.
The compartment diagram is as shown below, with 8 compartments as follows:

(1) Compartment U of susceptible individuals.

(2) Compartment E of exposed people who are not yet infectious but will progress to at least asymptomatic
infection.

(3) Compartment A of people with asymptomatic infection; we will assume that individuals in compart-
ment A are infectious, and some will eventually progress to a symptomatic infection.

(4) Compartment M of people with mild or moderate illness.

5) Compartment S of people with severe illness; these people are all assumed to be hospitalized.

6) Compartment C' of people with critical illness; these individuals are all assumed to be in an intensive
care unit in a hospital.

(7) Compartment D of people who have died of COVID-19.

(8) Compartment R of people who have recovered from COVID-19; we will assume that individuals in R
are no longer infectious.

The number of people in each of these compartments at time ¢ will be denoted u(t), e(t), a(t), and so on, and
we will measure time in days. Some of the metrics we will be particularly interested in include total deaths
(for the period of time 0 < ¢ < T under study), peak hospitalization (the maximum value of s(¢) 4 ¢(t) for
0 <t <T), peak ICU use (the maximum of ¢(t) for 0 < ¢ < T), the total number of infections u(0) — u(7")
in the time period under study. We assume the sum u(t) + e(t) + a(t) + m(t) + s(t) + c(t) + d(t) + r(¢) is
constant, equaling IV, the total number of individuals in the population being modeled.
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FiGURE 1. Compartment diagram for No Vaccine Model.

Some important assumptions we will make include:

(A1) Only individuals in compartments A and M are capable of passing the infection on to other contacts.
While we will generally assume that people in compartments A and M are equally infectious, our
set-up will allow for the possibility that individuals in compartment M are more infectious than
individuals in compartment A (as some studies have suggested). Since people in compartments S and
C' are hospitalized, we assume that hospital policies (e.g. no visitors, adequate PPE for healthcare
workers) prevent these individuals from infecting others.

(A2) The only deaths that occur are due to COVID.

(A3) Some people in each of the compartments M, S, and C will die of COVID, and exit their compartment
directly to compartment . No asymptomatic person though will die. People in compartments M, S,
and C die at a rate proportional to the size of the compartment, with proportionality constants mys,
mg, and m¢, respectively. These constants are called the mortality rates (hence the choice of the
letter m).

(A4) Individuals in compartments A, M, S, and C may recover (directly from those compartments), and
they do so at a rate proportional to the size of the compartment, with proportionality constants r4,
ry, s, and rgo, respectively. These constants are called the recovery rates.

(A5) All people in the exposed compartment E will progress to the asymptomatic compartment A, and
they do so at a rate proportional to the size of the compartment £ with proportionality constant
pg. Individuals spend on average 3 days in compartment F before progressing to the asymptomatic
compartment A, so that pg = 1/3.1

(A6) A general principle is that susceptible persons are infected at a rate jointly proportional to the number
of susceptibles and the number of people who are infectious. To use that principle here we must take
into account that infectious individuals are in both compartment A and compartment M, and we don’t
want to assume that asymptomatics and people with mild /moderate illness are equally infectious. Thus
we would expect that the differential equation for «'(¢) would include a “rate out” term that could be
written in the form

Baalt) - ()
SEA ) - B )

where f4 and s are positive constants and N is the total (fixed) size of the population.

1See the Appendix at the end of this project for a justification of the assertion that if the average time spent in the F

compartment is 3 days, then pg = %
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Values we will use for the progression, recovery, and mortality rates are given in the following table.? The
units on these parameters are 1/day.

Table 1. Progression, recovery and mortality rates.

PE pbA bm ps rA M rs rc mpg mg mgc
0.333 | 0.333 | 0.0833 | 0.05 | 0.222 | 0.0817 | 0.175 | 0.0607 | 0.00167 | 0.025 | 0.0107

Here is a sample calculation for the constants pg, rg, and mg, showing how clinical data leads to the values
in Table 1. Individuals spend an average of 4 days in compartment S. This means pg + rg + mg = i. Ten
percent of the people with a severe case of COVID-19 will die, and 20% will progress to critical status. The
remaining 70% of people in S will move from S to the recovered compartment R. Since pg + rg + mg = i,
we compute pg, rg, and mg individually by multiplying % by the fraction of the compartment occupied by
individuals who will progress to compartment C', R, and D, respectively:

1 1 1 7 1 1
=02)(-)===0. =0n(-)===01 =(0.1)(-) == =0.025.
ps = (0 )<4> 55 = 005, rs=(0.7) <4> 16 = 0175, ms = (0 )(4) 15 = 0025

You will be asked below to show how several of the other rate constants are obtained from similar infor-
mation.
The first set of questions apply to the no-vaccine model:

(a) People in compartment M spend on average 6 days there. Moreover, one percent of people in M die,
50% will progress to state S, and 49% will move from M to the recovered compartment R. From this
information, verify the values given above for s, mas, and pas.

(b) The average time spent in compartment C' is 14 days, and 15% of the people in the critical state will
die, while the rest will recover. Use this information to verify the values in Table 1 for m¢ and r¢.

(c¢) Next we develop a system of differential equations for u(t), e(t), a(t), m(t), s(t), c(t), r(t), and d(t)
corresponding to the compartment diagram above, assumptions (A1)-(A6), and the rate constants in
Table 1. We assume a population of total size 100,000, with initial values

u(0) = 90,900, e(0) =100, r(0) = 9,000, and all other initial values 0.
Temporarily setting aside the equations for v/(¢t) and €'(t) we begin with
a'(t) = —0.555a(t) + 0.333¢(t)
m/(t) = —0.16667m(t) + 0.333a(t)
s'(t) = —0.255(t) + 0.0833m(t)
d(t) = —0.0714c(t) + 0.05s(t)
r'(t) = 0.222a(t) + 0.0817m(t) + 0.175s(t) + 0.0607¢(t)

and
d'(t) = 0.00167m(t) + 0.025s(t) + 0.0107¢(t).

2These parameter values are taken from Clinical Outcomes of a COVID-19 Vaccine: Implementation Over Efficacy, by A.
David Paltiel, Jason L. Schwartz, Amy Zheng, and Rochelle P. Walensky, on which this project is based. This was available online
on November 22, 2020, ahead of print in Health Affairs 40, No. 1(2021).



Explain each of the numerical coefficients in these equations by reference to the rates in Table 1 and
the compartment diagram. For example, the first term on the right-hand side of the equation for a'(t)
is a “rate out” term (hence the negative sign); it has the coefficient p4 + r4 = 0.555 in front of a(t).
(d) The differential equation for u/(¢) has the form
a(t m(t
(1) = - 2400, gy Pl

where 54 and () are positive constants and N = 100, 000 is the constant fixed size of the population.
For our model, the values of 54 and Bj; are related to the basic reproduction number Ry by the
formula

(1) Ro = Ba L _Pa Bm .
PA+TA PA+TA DPMATM A MM

In our analysis we will assume that asymptomatic people and people with mild/moderate illness are
equally infectious so that 54 = Bys (or equivalently S4/5y = 1). Here is how we will use Equation (1):
If we choose a range of values for Ry, say Ryg = 1.5, Ry = 1.8, and Ry = 2.2, we can determine
Ba = By = B corresponding to our chosen value of Rg. This will give us the differential equation
for u/(t). Keep in mind that Ry is the expected number of additional infections directly caused by
one infectious person in an entirely susceptible population. A value of Ry greater than 1 means the
number of cases is expected to increase; we expect that the larger the value of Ry, the more difficult
the epidemic will be to control. More mask-wearing, social distancing, and policies that limit riskier
activities lead to lower values of Ry. Determine the values of 8 corresponding to Ry = 1.5, Ry = 1.8,
and Ry = 2.2.

(e) Give the differential equation for €/(¢) in our no-vaccine model, assuming Ry = 1.8. It should have two
pieces: one representing new transmissions coming from U and one representing progressions from F
to A. You will need the numerical value of pg from the above table and the calculated value of 3 from
(d).

(f) You now should have the complete system of equations for v'(t), €'(t), a’(t), m'(t), s'(t), ¢ (t), d'(t), and
' (t). As a check on your work, what should the sum u'(¢)+¢€'(t)+a’(t)+m’'(t)+5'(t)+¢ (t)+d’( )+r'(t)
be? Is it?

(g) The Mathematica starter “SEIRwithVACCStarter.nb” shows how to solve your no-vaccine system of
equations for 0 < t < 180 (i.e. over a period of about 6 months) with Ry value Ry = 1.8, and
how to determine total number of deaths, peak hospitalization, peak ICU usage, and total number of
infections during this time period. The results are summarized in Table 3 below. By modifying the
system of equations for Ry = 1.5 and Ry = 2.2 (only the value of 3, which appears in the equations for
u'(t) and €'(t) will change), complete the “No Vaccine” column of Table 3. Also graph the solutions
for e(t), a(t), m(t), s(t), c(t), and d(t) over this time period. Remark: Since you are not asked for
r(t), and r(t) does not appear in any other equation, you may omit the differential equation for /(¢)
in your system if you wish.

PART II: Adding Vaccinations to the Model. Now we modify the model from Part I to include
vaccinations. In doing this, we will add a parallel chain of compartments to the model, denoted UV, EV,
AV, MV, SV, and CV to denote the susceptible vaccinated, exposed vaccinated, asymptomatic vaccinated,
mild/moderate vaccinated, severe vaccinated, and critical vaccinated states. The later compartments are
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included because we do not assume that our vaccine is perfect, so some vaccinated persons will become
infected. The new compartment diagram is as shown below.

FiGURE 2. Compartment diagram for Vaccine Model.

Three basic assumptions we make about vaccinations:

(A7)
(A8)

(A9)

Only people in state U are vaccinated; in particular no vaccinations occur in people in state E.
Vaccination occurs at a rate proportional to the size u(t) of compartment U, with proportionality
constant v.

There is a time delay between when a vaccine is administered, and when it first takes effect. The
amount of this delay will depend in part on whether the vaccine is given in a single-dose, or requires
two doses. A person is not considered vaccinated (i.e. moved from compartment U to compartment
UV) until this time delay has elapsed.

The number of people in compartments UV, EV, AV etc. at time t are denoted uv(t), ev(t), av(t), and

SO O1.

(h)

For a vaccine with disease-modifying effects, the progression rate pgyv, pav, pymv, psy and poy
would be decreased from their corresponding “no-vaccine” model progression rates, as given in Table
1. Similarly the mortality rates mpsy, mgy and mey would be decreased from the corresponding
mortality rates in the no-vaccine model. The recovery rates 7oy, 7yv, sy and 7oy would be increased
from the corresponding rates in Table 1. Give values for all of these parameters assuming all mortality
rates are decreased by 50%, all progression rates are decreased by 50%, and all recovery rates are
increased by 100%. Record your answers in the table below. Also give the differential equations for
av'(t), mv'(t), sv'(t), cv'(t), and d'(t). To do this, you will need the full compartment diagram above,
and the parameter values from Table 2.



(i)

Table 2. Progression, recovery and mortality rates.

PEV | PAV | PMV | DSV | TAV | TMV | TSV | TCV | MMV | MSYy | MOV

To determine the new equation for u/(¢f) when vaccinations are incorporated into the model, first
observe that infections in state U can occur by contact between susceptible unvaccinated people and
people in states A, M, AV, and MV (as before we assume that people with severe or critical illness
are hospitalized and do not contribute to new infections). As in part I we assume that people in states
A and M are equally infectious, as are people in states AV and MV. The differential equation for
u'(t) and wv'(t) have the form

u'(t) = - rate of new transmissions to compartment E — rate of new vaccinations
t t *av(t * t
= —&;V()u(t) - BTX]( )u( ) — b (;\1;( )u( ) — g T;L\;)( )u(t) — rate of new vaccinations
and
w'(t) = — rate of new transmissions to EV + rate of new vaccinations

al(t m(t *av(t *mu(t

= -0 (B]\(f )uv(t) — BN( )uv(t) _ Pravt) N( )uv(t) _ prma(t) N( )
As in Part I, we will assume that the constant size of our population is N = 100, 000. The constants
and f* reflect both the infectiousness of the disease (for people in states A and M, and AV and MV,
respectively) and susceptibility to infection of persons in states U and UV. For a vaccine with disease-
modifying effects that decrease infectiousness among vaccinated people we have 8* < 5. When the
vaccine is also preventative, vaccinated persons are less susceptible, and we reflect this in our equation
for uv'(t) by means of a constant o < 1. We will use o = 3 (i.e. 50% less susceptibility). Record
the “rate of new transmissions to £” and the “rate of new transmissions to £V using the value of 3
corresponding to Ry = 1.8, g* = %B, o= %, and N = 100, 000.
To account for the time lag between when the vaccine is administered and when it takes effect the
equations we will use for u/(¢t) and uv'(t) will be delay differential equations with a time lag of either
14 days (appropriate for a vaccine administered as a single shot; Johnson and Johnson’s candidate
vaccine now in Phase 3 Trials may be of this type) or 30 days (the Pfizer vaccine requires 2 doses, 21
days apart, with effectiveness being reached about 7 days after the second dose). The delay differential
equation for u/(t) looks like

o Bal®) o Bm() - Brau(t) . Frmu(t)
u'(t) = N u(t) N u(t) N u(t) N u(t) — vu(t — A),

where the time lag A will be either 14 or 30 and the constant v is the pace, or rate, at which vaccination
is done. Similarly the delay differential equation for uv’(t) has the form

w'(t) = —o (B?\(ft)uv(t) - 5";[(” wv(t) — 6*6‘;5(t)uv(t) - Wuu(t)) +vu(t—A).

In general the theory of delay differential equations is rather more complicated that that of ordinary
differential equations. Luckily, numerical solutions of systems containing delay differential equations
with a constant delay can still be done using Mathematica, and that is what we will do. The main
new feature we will see is that instead of just providing initial conditions for our system, we will need

uv(t)) + rate new vaccinations
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initial history functions—mnotice that the delay equation for u'(t) requires that we know u(t — \) and
that when 0 < ¢ < A\, t — X is negative. Record the delay differential equations for u/(t) and uv'(t)
assuming that 5 = 0.33 (corresponding in part (d) to Rgp = 1.8), and that the vaccine reduces both
infectiousness and susceptibility by 50%. All constants in your equations except for v and A should be
specified. Also give the differential equations for €’(t) and ev’(t), using the progression rates pp and
pry from Tables 1 and 2, respectively.

The Mathematica starter “SEIRwithVACCStarter.nb” shows how to solve numerically the system of
equations for u(t), e(t), a(t), m(t), s(t), c(t), wv(t), ev(t), av(t), mv(t), sv(t), cv(t), and d(t) with
progression, recovery, and mortality rates as given above (in Tables 1 and 2), g* = %B, o = 0.5,
B = 0.33 (corresponding to Ry = 1.8) and with the following pairs for the time lag A and and the
vaccination rate v:

A=14, v=10.005; X =30, v=0.005.

As before, we use N = 100,000, «(0) = 90,900, e(0) = 100, 7(0) = 9,000, and all other variables at
t = 0 are 0. Key conclusions are shown in Table 3 below. By modifying these sample calculations in
the Mathematica starter, solve the delay differential equations system when the § value is changed to
correspond to the reproduction numbers Ry = 1.5 and Ry = 2.2, for both of the given pairs of A and
v. Summarize the resulting conclusions by completing Table 3. Also include the graphs of d(t), s(t),
c(t), sv(t), and cov(t) for 0 < t < 180.

Table 3: Comparing results at different Ry values, 0 < ¢ < 180.
No Vaccine | 14 day delay, v = .005 | 30 day delay, v = .005

Ry=1.5

Total Deaths

Peak hospitalization
Peak ICU usage

Total number of infections

Ry=18

Total Deaths 2632 866 1152
Peak hospitalization 1661 458 688
Peak ICU usage 655 181 271
Total number of infections | 59162 23668 30291
Ry =2.2

Total Deaths
Peak hospitalization
Peak ICU usage

Total number of infections




Q)

Also do one more calculation for the following scenario: Progression, recovery, and mortality rates
as given in Tables 1 and 2, f* = %B, o = 0.5, with the values of § corresponding to Ry = 1.8, time lag
A = 14 and the vaccination rate v = 0.01, so that the only change from the “14 day delay” calculations

in Table 3 is a doubling of the rate of vaccination. Summarize the key metrics in the table below:

Table 4: A faster pace of vaccination, 0 < ¢ < 180.
14 day delay, v = 0.01

Ry=138
Total Deaths

Peak hospitalization

Total number of infections

Models such as this one can help inform policy decisions. At least to start out, vaccine demand will
greatly outpace supply. Based on the information you obtained in Table 3, would you advocate for a
policy that allocates greater vaccine supply to areas where COVID-19 is spreading more severely? To
answer this, you might compare the percent decrease in deaths/hospitalizations from the no-vaccine
to the vaccine models for each Ry value. Use the 14 day delay and v = 0.005 from Table 3.

Compare the total deaths, peak hospitalizations, and total infections for two different vaccine models,
using the  value corresponding to Ry = 1.8:

Option A: 14 day delay, 50% efficacy, v = 0.01

and

Option B: 30 day delay, 90% efficacy, v = 0.005.

Notice that for the first case, you have already done the calculations in (k)—see your answers in Table
4. For Option B, interpret 90% efficacy as meaning that progression and mortality rates are decreased
by 90% from the values given in Table 1, 8* = 0.13, and o = 0.1. Further assume that recovery rates
are increased by a factor of 3 from those given in Table 1. You may find it helpful to summarize these
new rates in Table 5 below. Using these values, write the new system of delay differential equations
corresponding to Option B, and follow the outline in the Mathematica starter to fill out Table 6.

Table 5. Progression, recovery, mortality rates; high efficacy vaccine.

PEV | PAV | PMV | PSV | TAV | TMV | TSV | TCVv | MMy | MSy | MCV




Table 6: Option B; 30 day delay, v = 0.005, 0 <t < 180.
30 day delay, v = 0.005

Ry=1.8
Total Deaths

Peak hospitalization

Total number of infections

Suppose you had a vaccine as in Option B, originally intended to be given as a two-dose shot. Ongoing
vaccine shortages are occurring, and if just a single dose of the vaccine is given it behaves as in Option A.
From a public health standpoint, would you advocate for using the vaccine this way?

To put this question in perspective, we note that on December 31, 2020, an article in The Washington Post
discussing the approval in Britain of the AstraZeneca vaccine (a 2 dose vaccine) states that “[Britain Health
Minister] Hancock said that in the interest of injecting as many people as possible as quickly as possible, it
would be sufficient to give a first dose of the AstraZeneca vaccine and allow more than the usual 21 days
between shots. ...immunity comes from around two weeks after the first dose, and then the second dose
should be taken up to 12 weeks later ...” On the same day Dr. Anthony Fauci in the United States indicated
that a similar plan regarding the Pfizer vaccine was under “intense discussion”, while independently Pfizer
released a statement that their vaccine had not been evaluated on a dosing schedule different from the “2
doses, separated by 21 days” plan.

Appendix. Here we provide justification of the following assertion: In a compartment model where members
of a compartment exit that compartment at a rate proportional to the population of the compartment with
proportionality constant k, then the average time spent in the compartment is 1/k.

: k
We will assume that our time unit is days. The differential equation y/(t) = —ky has solution y = y(0)e ™.
The fraction of the original population that leaves the compartment on the first day is

y(0) —y(0)e*
y(0)
The fraction of the original population that leaves the compartment on the second day is
y(0)e™* —y(0)e** ok 2%
y(0)

Continuing, we see that the fraction of the original population that leaves the compartment on the third day
is e2k — ¢73% and in general the fraction that leaves on the j*™ day is e"U~Dk — ¢=3k This leads to a

=1—e¢7"
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calculation of the approximate average time spent in the compartment as

l—e ™ +2eF—e®) 43 e 4. =1+eFte e =1 -
where the last equality follows from using the geometric series formula to compute the infinite sum 1+ e~ % +
e 2k 4 73k 4 ... Using the Taylor series for e* we have
K2k k?
—k _ _ oo Moo
T R THRAT
and thus

1
(1—e Mt Z
when k is small. Now imagine doing the same kind of calculation with a shorter time period of length T < 1.

The expected time spent in the compartment is

T

T(l _ e—kT) + 2T(€—kT _ 6_2kT) +3T(€—2kT _ e—3kT) 4= T(l +€—kT + 6—2kT +€—3kT 4. ) — =

Taking the limit as 7' — 0 using L’Hopital’s Rule gives

1
hm — = 11l — = —
7501 —e T 150ke kT |

for the time spent in the compartment.



