
Project: Legendre’s equation

Prerequisites: Completion of Section 7.3 of Differential Equations: Techniques, Theory, and Applications, by
MacCluer, Bourdon, and Kriete.

Legendre’s equation is

(1) (1− x2)y′′ − 2xy′ + λy = 0

where λ is a constant. Some of its solutions have widespread applications in the physical sciences – see for
example part (n) below. In this project you are invited to find the series solutions for this equation and
investigate a famous special case, the Legendre polynomials. Since x0 = 0 is an ordinary point for this
equation, we can seek power series solutions

(2) y(x) =

∞∑
k=0

akx
k

centered at x = 0. We use k, rather than n, as the index of summation here to save n for another purpose.
Since the only zeros of 1 − x2, namely x = 1 and x = −1, are one unit away from x0 = 0, Theorem 7.3.2
guarantees that these series solutions will have radius of convergence no smaller than 1, and so will converge
(at least) on −1 < x < 1.

(a) Show that the recursion relation for the series solution in (2) is

ak+2 =
k(k + 1)− λ

(k + 2)(k + 1)
ak

for k = 0, 1, 2, .... This tells you how a0 determines all of the subsequent evenly-indexed coefficients
a2, a4, a6, . . . and how a1 determines the remaining oddly-indexed coefficients a3, a5, a7, . . ..

(b) Legendre’s equation is of most interest when λ ≥ 0. In this case there is a unique nonnegative number
b with λ = b(b+ 1), and we’ll see that it’s convenient to write λ in this form. Show that in terms of b
the recursion relation is

(3) ak+2 = −(b− k)(b+ k + 1)

(k + 2)(k + 1)
ak.

A fundamental set of solutions. With the recursion relation in hand, let’s turn to finding a linearly
independent pair of solutions, y1 and y2, by requiring that

y1(0) = 1, y′1(0) = 0

and

y2(0) = 0, y′2(0) = 1.

Since the Wronskian W (x) of y1 and y2 will satisfy

W (0) = y1(0)y′2(0)− y2(0)y′1(0) = 1,

the linear independence of y1 and y2 will be guaranteed. The initial conditions for y1 say that a0 = 1 and
a1 = 0. It then follows from the recursion relation (3) that in the series expansion for y1, a1, a3, a5, . . . must
all be zero, and the series for y1 contains only even powers of x. Similarly, the initial conditions for y2 imply
that for the second solution we seek, a0 = 0 and a1 = 1. The recursion relation tells us that in the series
expansion for y2, a2, a4, a6, . . ., are all zero, and the series contains only odd powers of x.

(c) We know the series for y1 has the form

y1(x) =
∞∑
k=0

a2kx
2k

where a0 = 1. Show that for k = 1, 2, 3, . . .,

(4) a2k = (−1)k
b(b− 2)(b− 4) · · · (b− 2k + 2)(b+ 1)(b+ 3) · · · (b+ 2k − 1)

(2k)!
.
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If you are familiar with mathematical induction, the best practice here would be to give an induction
proof using the initial value a0 = 1 and the recursion relation (3). Otherwise, it will suffice to calculate
a2, a4, a6, and a8 to demonstrate the pattern.

(d) Now consider the second solution y2. Here we know that a0, a2, a4, . . . are all zero and a1 = 1. We can
write y2 as

y2(x) =
∞∑
k=0

a2k+1x
2k+1.

Show that

(5) a2k+1 = (−1)k
(b− 1)(b− 3)(b− 5) · · · (b− 2k + 1)(b+ 2)(b+ 4)(b+ 6) · · · (b+ 2k)

(2k + 1)!

for k = 1, 2, 3, . . ..

Polynomial solutions of Legendre’s equation. As we have already noted, any power series solution
centered at zero to Legendre’s equation must converge at least on the interval −1 < x < 1. Some solutions
may converge for a larger set of x’s. One way this can happen is if the power series terminates; that is, if all
of its coefficients are zero after a certain point. In this case the solution is just a polynomial, which is defined
for all real numbers x.

Only for certain values of the parameter b will the solution y1 be a polynomial. From Equation (4) for the
coefficient a2k in y1, we can see that if b is an even integer, call it n, then an 6= 0 but 0 = an+2 = an+4 = · · ·
and y1 is a polynomial of (even) degree exactly n,

(6) y1(x) =

n/2∑
k=0

a2kx
2k.

Moreover, this is the only way y1 turns out to be a polynomial of even degree n, and we have from (4)

a2k = (−1)k
n(n− 2)(n− 4) · · · (n− 2k + 2)(n+ 1)(n+ 3)(n+ 5) · · · (n+ 2k − 1)

(2k)!

= (−1)k
A2kB2k

(2k)!
,

where

(7) A2k = n(n− 2)(n− 4) · · · (n− 2k + 2)

and

B2k = (n+ 1)(n+ 3)(n+ 5) · · · (n+ 2k − 1).

We would like to somehow express A2k and B2k in “closed form”. In the present context, this means expressing
them in terms of factorials. First note that if n− 2k = 0 (that is, if k = n/2, the upper index of summation
in (6)), then

A2k = An = n(n− 2)(n− 4) · · · (4)(2).

There are n/2 factors here, all even, so

An = 2n/2
(n

2

)(n
2
− 1
)(n

2
− 2
)
· · · (2)(1)

= 2n/2
(n

2

)
!(8)

(e) Now suppose that k < n/2 so that n− 2k is not zero. Show that

A2k =
2k
(
n
2

)
!(

n
2 − k

)
!
.

Notice that when k = n/2, this agrees with Equation (8), since 0! is defined to be 1. Suggestion:
Multiply and divide the expression (7) for A2k by

(n− 2k)(n− 2k − 2)(n− 2k − 4)...(4)(2).
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(f) Show that

B2k =
(n2 )!(n+ 2k)!

2kn!(n2 + k)!
,

and conclude that

a2k = (−1)k
1

(2k)!
A2kB2k

=

((
n
2

)
!
)2

n!

(−1)k(n+ 2k)!

(2k)!
(
n
2 − k

)
!
(
n
2 + k

)
!
.(9)

(g) It is customary (and more convenient) to write the sum (6) for y1(x) “backwards”, starting with the
leading term anx

n and ending with the constant term a0. You can do this by defining a new index of
summation j via the equation 2k = n− 2j. With this convention, Equation (6) becomes

y1(x) =

n/2∑
j=0

an−2jx
n−2j .

Insert this change of index into the formula (9) for a2k to show that

a2k = an−2j =
(−1)n/2

((
n
2

)
!
)2

n!

(−1)j(2n− 2j)!

j!(n− j)!(n− 2j)!

so that

(10) y1(x) =
(−1)n/2

((
n
2

)
!
)2

n!

n/2∑
j=0

(−1)j
(2n− 2j)!

j!(n− j)!(n− 2j)!
xn−2j .

To summarize so far: If n is an even integer, y1 as given by (10) is a polynomial solution having degree n
of Legendre’s equation

(x2 − 1)y′′ − 2xy′ + n(n+ 1)y = 0

satisfying y1(0) = 1 and y′1(0) = 0.

(h) However, it turns out that the most commonly used solution is not y1, but a constant multiple of it,
namely cy1, where the constant c is chosen so that the coefficient bn of xn in cy1(x) is

bn =
(2n)!

2n(n!)2
.

Show that the value of c that accomplishes this is

c = (−1)n/2
n!

2n
((

n
2

)
!
)2

and that with this choice of c you arrive at the nth Legendre polynomial of even degree n, denoted
by Pn(x), defined to be cy1(x), and given by the formula

Pn(x) = cy1(x) =
1

2n

n/2∑
j=0

(−1)j
(2n− 2j)!

j!(n− j)!(n− 2j)!
xn−2j .

The reason for preferring this particular choice of c (or equivalently, the choice of leading coefficient bn
mentioned above) is that with it you have the very nice fact that Pn(1) = 1. (You are asked to verify
this in part (m) below.) As a side benefit, the formula for Pn(x) looks simpler than the formula (10)
for y1(x).

(i) What about our second linearly independent solution

y2(x) =

∞∑
k=0

a2k+1x
2k+1?
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It’s clear from the expression (5) for a2k+1 that y2 will be a polynomial exactly when b = n, some odd
integer. In this case, we see that for k = 1, 2, 3, ...,

a2k+1 = (−1)k
(n− 1)(n− 3)(n− 5) · · · (n− 2k + 1)(n+ 2)(n+ 4)(n+ 6) · · · (n+ 2k)

(2k + 1)!
.

Thus an 6= 0, but 0 = an+2 = an+4 = ..., and y2 is a polynomial of (odd) degree exactly n,

(11) y2(x) =

(n−1)/2∑
k=0

a2k+1x
2k+1.

Here we know a1 = 1, and for k = 1, 2, 3, ... we can abbreviate a2k+1 as

a2k+1 = (−1)k
C2k+1D2k+1

(2k + 1)!
,

where

C2k+1 = (n− 1)(n− 3)(n− 5) · · · (n− 2k + 1)

and

D2k+1 = (n+ 2)(n+ 4)(n+ 6) · · · (n+ 2k).

Your tasks are to express D2k+1 and C2k+1 in closed form, and to conclude that

a2k+1 =

((
n−1
2

)
!
)2

n!

(−1)k(n+ 2k)!

(2k + 1)!
(
n−1
2 − k

)
!
(
n−1
2 + k

)
!
.

(Suggestion: Find a closed form for (n + 1)(n + 3)(n + 5)...(n + 2k − 1). Then multiply and divide
D2k+1 by this expression and n! to find a closed form for D2k+1. For both D2k+1 and C2k+1, keep in
mind that n− 1 is even.)

(j) As with y1, the polynomial we really want is not y2(x), but cy2(x), where c is again chosen to make
the coefficient of xn in cy2(x) equal to

(2n)!

2n(n!)2
.

Some caution is required: This c is different from the c that worked for y1(x). In fact, let’s call it c̃
to emphasize this. Remarkably, you should reach almost the same result, namely the nth Legendre
polynomial Pn, now of odd degree n, given by

Pn(x) = c̃y2(x) =
1

2n

(n−1)/2∑
j=0

(−1)j
(2n− 2j)!

j!(n− j)!(n− 2j)!
xn−2j .

To arrive at this formula for Pn(x), you will need to
(i) Write the sum (11) ”backwards” (as you did in the case of even n by introducing a new index of

summation j, but this time defined by 2k + 1 = n− 2j).
(ii) Calculate c̃.

Even and odd together. The only difference between the formulas for Pn with n even, and Pn with n odd,
is the upper limit of summation. We can combine these formulas into one by introducing [n/2], the greatest
integer not exceeding n/2. When n is even, [n/2] = n/2, and when n is odd, [n/2] = (n − 1)/2. This allows
us to write

(12) Pn(x) =
1

2n

[n/2]∑
j=0

(−1)j
(2n− 2j)!

j!(n− j)!(n− 2j)!
xn−2j

for any nonnegative integer n = 0, 1, 2, · · · .
(k) Calculate the polynomial Pn(x) explicitly for n = 0, 1, 2, 3, 4, 5. Then use a CAS to plot the graph of

each of these functions for −1 ≤ x ≤ 1. (See the beginning comment in part (ii) of (n) below.)
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(l) Having gotten this far, it’s easy to derive another useful expression for Pn(x), called Rodrigues’
formula, which states that

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

On the right-hand side you can use the Binomial Theorem to write

(13) (x2 − 1)n =
n∑

k=0

(
n

k

)
(−1)kx2n−2k

where (
n

k

)
=

n!

k!(n− k)!
.

(i) Show that the nth derivative of x2n−2k is equal to zero if [n/2] < k ≤ n, but is equal to

(2n− 2k)!

(n− 2k)!
xn−2k

if 0 ≤ k ≤ [n/2].
(ii) Use (13) and your result from (i) to show that

dn

dxn
(x2 − 1)n =

[n/2]∑
k=0

(−1)k
n!(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k.

(iii) Compare your result in (ii) with Equation (12) to finish the proof of Rodrigues’ formula.
(m) Suppose that f and g are functions that can be differentiated any number of times. The product rule

from calculus says that

(fg)′ = fg′ + f ′g.

Differentiating again, using the product rule where necessary on the right, we find

(fg)′′ = fg′′ + 2f ′g′ + f ′′g.

Similarly, a third differentiation gives

(fg)′′′ = fg′′′ + 3f ′g′′ + 3f ′′g′ + f ′′′g.

One can continue in this way (mathematical induction works well for this) to show that for any positive
integer n,

(14) (fg)(n) =

n∑
k=0

(
n

k

)
f (k)g(n−k)

where f (k) denotes the kth derivative of f and
(
n
k

)
is the binomial coefficient(

n

k

)
=

n!

k!(n− k)!
.

(i) Since x2 − 1 = (x− 1)(x+ 1), Rodrigues’ formula states that

Pn(x) =
1

2nn!

dn

dxn
[(x− 1)n(x+ 1)n].

Use this and (14) to show that

Pn(x) =
1

2n

n∑
k=0

(
n

k

)2

(x− 1)n−k(x+ 1)k.

(ii) Use your result in (i) to show that Pn(1) = 1 and Pn(−1) = (−1)n.
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(n) Legendre’s equation and polynomials arise in a variety of applications; for instance, when solving
the three-dimensional wave equation and Laplace’s equations in spherical coordinates. Steady-state-
temperature functions satisfy Laplace’s equation. It can be shown that a function modeling the
temperature in degrees Celsius of a solid ball of radius 10 cm whose upper hemispherical surface is
held at 100 degrees Celsius and whose lower hemispherical surface is held at 0 degrees Celsius is given,
in spherical coordinates, by

T (ρ, φ) = 50 + 25
∞∑
k=0

(−1)k(2k)!(4k + 3)

22k(k + 1)(k!)2

( ρ
10

)2k+1
P2k+1(cosφ).

(i) According to this model, what is the temperature of the ball at any point in the “equatorial
plane” φ = π/2.

(ii) Your computer-algebra system should have Legendre polynomials “built-in”. E.g., in Mathematica

LegendreP[n, x] = Pn(x).

Let

Tn(ρ, φ) = 50 + 25
n∑

k=0

(−1)k(2k)!(4k + 3)

22k(k + 1)(k!)2

( ρ
10

)2k+1
P2k+1(cosφ).

To two decimal places, compute approximate temperatures T10(5, π/4), T10(10, π/4), T10(5, 3π/4),
T10(10, 3π/4), T100(5, π/4), T100(10, π/4), T100(5, 3π/4), and T100(10, 3π/4).


