
Project: An SIQR model for COVID-19.

Introduction The project “COVID-19” presented an initial attempt to model the spread of COVID-19 with a
SEIR (susceptibles-exposed-infectives-removed) compartment model. However, after that project was written
it became more and more apparent that a significant number of people could have an asymptomatic case
of COVID-19, and that these people could be infectious and circulating in the population without knowing
they were sick. This was especially the case since testing was often limited to symptomatic individuals who
also met other criteria like travel to areas where COVID-19 was known to exist or known exposure to a
documented case. The inability to identify infectious people accurately makes it hard to use an SEIR model
and reconcile it with the available data. Because of this, here we will look at a different kind of compartment
model, denoted SIQR, where the compartments are susceptibles-infectives-quarantined-removed.

The SIQR model. As in an SIR or SEIR model, the S compartment consists of the susceptible individuals.
From this compartment, an individual can move into the infectives compartment I, and this compartment
includes asymptomatic, presymptomatic (infectious, but not yet showing symptoms, though they will even-
tually do so), and those with symptoms who have not yet been isolated so they are still able to transmit
the disease to others. However, once an infectious person is identified as COVID-19 positive we assume that
person is then isolated (either at home or in a hospital, voluntarily or involuntarily) and thus moves to the
quarantined compartment Q. Such an individual can then no longer transmit the disease to anyone else.
These four compartments are pictured below; the removed compartment R (recovered or dead individuals) is
discussed in detail below (where it will be refined).

Susceptibles Infectives Quarantine Removed

6

-
η
-

γ

α

-

We let S(t), I(t), Q(t), and R(t) denote the number of people in each compartment at time t. Ignoring
births or deaths due to non-COVID causes, we will assume that we have a community of total size N , which
is constant. As a first model we will use the equations

S′(t) = − β

N
SI

I ′(t) =
β

N
SI − (α+ η)I

Q′(t) = ηI − γQ

R′(t) = γQ+ αI

Note that some infected persons are never identified as such and thus never move to the quarantined com-
partment.

Comparing the model to available data. We are going to use our model with data from Italy in the period
from February 21, 2020 to April 22, 2020. Italy was the first European country to be severely affected by
COVID-19, and containment/mitigation measures were instituted there in several steps. When an individual
was identified as COVID-19 positive in Italy, the person was immediately isolated (at home or in a hospital),
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thus moving them from the I compartment to the Q compartment. Available data1 gives the cumulative
number of identified COVID-19 positive cases, and at time t would be given by the sum of Q(t) and the
number of individuals who have moved from compartment Q to compartment R by time t. Asymptomatic
cases which appear in compartment I but never move to Q (i.e. are never identified) before eventually moving
to R are “invisible”. Thus to compare our model with available data we need to separate the R compartment
into two sub-compartments, RQ and RI , of removed individuals from compartment Q and compartment I,
respectively. In doing this, Q(t) + RQ(t) measures the cumulative number of observed cases at time t. Thus
we modify our compartment diagram as follows:
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The corresponding system of differential equations is now:

S′(t) = − β

N
SI

I ′(t) =
β

N
SI − (α+ η)I

Q′(t) = ηI − γQ

R′Q(t) = γQ

R′I(t) = αI

Parameter values. We will be modeling the spread of coronavirus in Italy from February 21 (t = 0) to
April 22 (t = 61). Italy instituted an initial lockdown of the country (starting with the northern part) over a
period of a few days in early March (March 8-10), and more stringent measures including a broad lockdown
of non-essential workplaces took place on March 20. To reflect these changes in public health policy, we will
consider our differential equation system over three time periods: February 21 to March 10 (t = 0 to t = 18),
March 10 to March 20 (t = 18 to t = 28), and March 20 to April 22 (t = 28 to t = 61).

(a) Explain why the ratio (RQ(n)−RQ(n− 1))/Q(n− 1) gives a rough approximation to the value of the
parameter γ (for any integer value of n ≥ 1). Also, explain why we have data available to compute
these ratios, assuming that the Health Department in Italy provides daily figures for the number of
active COVID-19 cases, the number of deaths, and the number of recovered individuals. The authors
of the paper2 compute the average of these ratios over the three time periods 0 ≤ t ≤ T1, T1 ≤ t ≤ T2,
and T2 ≤ t ≤ T3 where T1 is March 10, T2 is March 20, and T3 corresponds to April 22, and used
these averages to give γ1 = 0.041, γ2 = 0.038, and γ3 = 0.023 for the three time periods, respectively.
These are the values we will use in our model. What are the units on γ?

(b) To understand the parameters α and η, first recall that moving from compartment I to compartment
Q happens when an individual tests positive for COVID-19 or is presumed positive based on their
symptoms. We estimate this happens for about 1/3 of the people in compartment I; evidence for this
figure of 1/3 can be found in several situations where all individuals were tested and data were obtained

1From the Italian Department of Health at http://www.salute.gov.it/nuovocoronavirus
2Morten Gram Pedersen and Matteo Meneghini, Quantifying undetected COVID-19 cases and effects of containment measures

in Italy: Predicting phase 2 dynamics, preprint March 2020, available at researchgate.net/publication/339915690.
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on how many who tested positive were asymptomatic (e.g. passengers on the Diamond Princess cruise
ship, or the residents of the Italian village Vo’Euganeo). Correspondingly, about 2/3 of all people in
compartment I will move into compartment RI . Regardless of whether a person moves from I to Q
or from I to RI , the average time spent in compartment I is 10 days. Thus, for the parameters η we
obtain η = 1

3
1
10 ≈ 0.0333. What is the corresponding estimate for the parameter α? What are the

units on η and α?
(c) The number d = 1

(α+η) can be interpreted as the average number of days that an individual spends

in the I compartment. Another important number is the reproduction number R0 = β
(α+η) . Its

interpretation is that, on average, each infected individual will directly infect R0 additional individuals
over the course of their infection. At the early stages of the epidemic (this includes all times under
consideration in this project), S ≈ N (almost everyone in the community is susceptible). If we
accordingly make the approximation S = N in our differential equation for I, we obtain the single
linear equation

(1) I ′(t) = βI − (α+ η)I = ρI

where ρ = β − (α+ η). Your task here is to use this approximating linear equation to show that over
the average time period that an individual remains in the I compartment, the infected population will
grow (or shrink) approximately by a factor of e(R0−1), that is, if t0 is any time in the early stages of
the epidemic, then show that

I(t0 + d) ≈ e(R0−1)I(t0).

(d) Returning to the data available from the Italian Department of Health, we will determine the value of
β in each of the three time periods 0 ≤ t ≤ T1, T1 ≤ t ≤ T2, and T2 ≤ t ≤ T3 (where T1 = 18, T2 = 28,
and T3 = 61) that best fits the available data. Parts (e)-(g) below outline how this is done. There you
will obtain the values β1 = 0.2898 for 0 ≤ t ≤ T1, β2 = 0.2018 for T1 ≤ t ≤ T2, and β3 = 0.0818 for
T2 ≤ t ≤ T3. Compute the reproduction number R0 = β

(α+η) for each of the three time periods.

(e) Determining β1. Recall the approximation I ′(t) = βI − (α + η)I = ρI (Equation (1)), where
ρ = β − (α+ η). From (b) we have α+ η = 0.1. We are going to be considering three different values
of β, and hence three different values of ρ, one for each time period 0 ≤ t ≤ T1, T1 ≤ t ≤ T2, and
T2 ≤ t ≤ T3. We will denote these ρ1 and β1, ρ2 and β2, and ρ3 and β3, respectively.

Show that for 0 ≤ t ≤ T1 Equation (1) with initial condition I = I(0) at t = 0 has solution

(2) I(t) = I(0)eρ1t.

Since

Q′(t) = ηI − γQ

and

(RQ)′(t) = γQ

we have (Q + RQ)′(t) = ηI = ηI(0)eρ1t where we have used our approximation (2) for I. Show that
with Q(0) = 0 and RQ(0) = 0, this gives

(3) (Q+RQ)(t) =
ηI(0)

ρ1
(eρ1t − 1)

for 0 ≤ t ≤ T1, where ρ1 = β1 − (α + η) = β1 − 0.1. Using Mathematica you will determine values
of ρ1 (and hence β1) and I(0) to best fit the data from the Italian health department for Q + RQ,
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0 ≤ t ≤ T1, with a function of the form

ηI(0)

ρ1
(eρ1t − 1);

the Mathematica starter outlines the relevant commands. For use in part (f) we also compute Q+RQ
at the end of the first time period as

(4) (Q+RQ)(T1) =
ηI(0)

ρ1

(
eρ1T1 − 1

)
.

(f) Determining β2. Next you will determine the “best fit” value of β2 for the time period T1 ≤ t ≤ T2.
First we solve I ′(t) = ρ2I with I(T1) = I(0)eρ1T1 from Equation (2) to obtain

I(t) = I(0)eρ1T1eρ2(t−T1)

for T1 ≤ t ≤ T2. Note that

(5) I(T2) = I(0)eρ1T1eρ2(T2−T1);

you will need this in (g).
Show that the solution to

(Q+RQ)′(t) = ηI(t) = ηI(0)eρ1T1eρ2(t−T1)

having value

(Q+RQ)(T1) =
ηI(0)

ρ1

(
eρ1T1 − 1

)
(from Equation (4)) can be written as

(6) (Q+RQ)(t) = ηI(0)
eρ1T1

ρ2

(
eρ2(t−T1) − 1

)
+
ηI(0)

ρ1

(
eρ1T1 − 1

)
.

Using the outline in the Mathematica starter, determine ρ2 and hence also β2, to best fit the data for
the time period T1 ≤ t ≤ T2. In doing this, you will be using the values of η, I(0), and ρ1 already
determined.

Note that from Equation (6) we can compute

(Q+RQ)(T2) = ηI(0)
eρ1T1

ρ2

(
eρ2(T2−T1) − 1

)
+
ηI(0)

ρ1

(
eρ1T1 − 1

)
.

(g) Determining β3. Finally we determine our best fit value of ρ3 and thus β3 for the time period
T2 ≤ t ≤ T3. To do this, first solve I ′(t) = ρ3I with

I(T2) = I(0)eρ1T1eρ2(T2−T1)

to obtain

I(t) = I(0)eρ1T1eρ2(T2−T1)eρ3(t−T2).

Using this, solve

(Q+RQ)′(t) = ηI(0)eρ1T1eρ2(T2−T1)eρ3(t−T2)

with initial condition

(Q+RQ)(T2) = ηI(0)
eρ1T1

ρ2

(
eρ2(T2−T1) − 1

)
+
ηI(0)

ρ1

(
eρ1T1 − 1

)
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(from (f)) and show that the result can be written as

(Q+RQ)(t) = ηI(0)
eρ1T1

ρ2

(
eρ2(T2−T1) − 1

)
+
ηI(0)

ρ1

(
eρ1T1 − 1

)
+
ηI(0)

ρ3
eρ1T1eρ2(T2−T1)

(
eρ3(t−T2) − 1

)
.

All constants on the right-hand side are known except for ρ3. Using the commands outlined in the
Mathematica starter notebook to determine ρ3, and hence β3, to best fit our data for T2 ≤ t ≤ T3.

(h) Summarizing our parameter values we have

α = 0.06667, η = 0.03333,

γ1 = 0.041, γ2 = 0.038, γ3 = 0.023,

and
β1 = 0.2898, β2 = 0.2018, β3 = 0.0818.

Using these values in our nonlinear SIQR system and the numerical solution feature in Mathematica,
solve for Q(t) and RQ(t) in each of the three time periods, and graphically compare your solution for
Q+RQ to the provided data in each time period. The Mathematica starter indicates how to do this.
Assume Q(0) = 0, RQ(0) = 0, and as determined in (e), I(0) = 2048. Give a final graph that shows
the solution for Q + RQ for 0 ≤ t ≤ 61 together with the data points for actual cumulative cases (as
given in the Mathematica starter).


