Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Explicit estimates on several summatory functions involving the Moebius function
HTML articles powered by AMS MathViewer

by Olivier Ramaré PDF
Math. Comp. 84 (2015), 1359-1387 Request permission

Corrigendum: Math. Comp. 88 (2019), 2383-2388.

Abstract:

We prove that $|\sum _{d\le x}\mu (d)/d|\log x\le 1/69$ when $x\ge 96 955$ and deduce from that: \[ \bigg |\textstyle {\sum _{\left \{\substack {d\le x,\\(d,q)=1}\right .}}\mu (d)/d\bigg |\log (x/q)\le \tfrac 45 q/\varphi (q)\] for every $x>q\ge 1$. We also give better constants when $x/q$ is larger. Furthermore we prove that $|1-\sum _{d\le x}\mu (d)\log (x/d)/d|\le \tfrac 3{14}/\log x$ and several similar bounds, from which we also prove corresponding bounds when summing the same quantity, but with the additional condition $(d,q)=1$. We prove similar results for $\sum _{d\le x}\mu (d)\log ^2(x/d)/d$, among which we mention the bound $|\sum _{d\le x}\mu (d)\log ^2(x/d)/d-2\log x+2\gamma _0|\le \tfrac {5}{24}/\log x$, where $\gamma _0$ is the Euler constant. We complete this collection by bounds such as \[ \textstyle {\bigg |\sum _{\left \{\substack {d\le x,\\(d,q)=1}\right .}}\mu (d)\bigg |/x\le \tfrac {q}{\varphi (q)}/\log (x/q).\] We also provide all these bounds with variations where $1/\log x$ is replaced by $1/(1+\log x)$.
References
  • A. Axer, Über einige Grenzwertsätze, Wien. Ber. 120 (1911), 1253–1298 (German).
  • M. Balazard, Remarques élémentaires sur la fonction de Moebius, private communication (2011).
  • —, Elementary remarks on Möbius’ function, Proceedings of the Steklov Intitute of Mathematics 276 (2012).
  • Paul T. Bateman and Harold G. Diamond, Asymptotic distribution of Beurling’s generalized prime numbers, Studies in Number Theory, Math. Assoc. America, Buffalo, N.Y.; distributed by Prentice-Hall, Englewood Cliffs, N.J., 1969, pp. 152–210. MR 0242778
  • D. Berkane, O. Bordellès, and O. Ramaré, Explicit upper bounds for the remainder term in the divisor problem, Math. Comp. 81 (2012), no. 278, 1025–1051. MR 2869048, DOI 10.1090/S0025-5718-2011-02535-4
  • N. Costa Pereira, Elementary estimates for the Chebyshev function $\psi (x)$ and for the Möbius function $M(x)$, Acta Arith. 52 (1989), no. 4, 307–337. MR 1030085, DOI 10.4064/aa-52-4-307-337
  • H.G. Diamond and Wen-Bin Zhang, A PNT equivalence for Beurling numbers, Submitted to Functiones et approximatio (2012).
  • François Dress and Mohamed El Marraki, Fonction sommatoire de la fonction de Möbius. II. Majorations asymptotiques élémentaires, Experiment. Math. 2 (1993), no. 2, 99–112 (French, with English and French summaries). MR 1259424
  • M. El Marraki, Fonction sommatoire de la fonction de Möbius. III. Majorations asymptotiques effectives fortes, J. Théor. Nombres Bordeaux 7 (1995), no. 2, 407–433 (French, with English and French summaries). MR 1378588
  • M. El Marraki, Majorations de la fonction sommatoire de la fonction $\frac {\mu (n)}n$, Univ. Bordeaux 1 Pré-publication (1996), no. 96-8.
  • Andrew Granville and Olivier Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), no. 1, 73–107. MR 1401709, DOI 10.1112/S0025579300011608
  • Alfred Kienast, Über die Äquivalenz zweier Ergebnisse der analytischen Zahlentheorie, Math. Ann. 95 (1926), no. 1, 427–445 (German). MR 1512286, DOI 10.1007/BF01206619
  • R. A. MacLeod, Errata to the paper “A new estimate for the sum $M(x)=\Sigma _{n\leq x}\,\mu (n)$”, Acta Arith. 16 (1969/70), 99–100. MR 245541, DOI 10.4064/aa-16-1-99-100
  • R. A. MacLeod, A curious identity for the Möbius function, Utilitas Math. 46 (1994), 91–95. MR 1301298
  • H.L. Montgomery and R.C. Vaughan, Multiplicative Number Theory: I. Classical Theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, 2006.
  • Y\B{o}ichi Motohashi, Primes in arithmetic progressions, Invent. Math. 44 (1978), no. 2, 163–178. MR 472739, DOI 10.1007/BF01390349
  • Nathan Ng, The distribution of the summatory function of the Möbius function, Proc. London Math. Soc. (3) 89 (2004), no. 2, 361–389. MR 2078705, DOI 10.1112/S0024611504014741
  • The PARI Group, Bordeaux, PARI/GP, version 2.5.2, 2011, http://pari.math.u-bordeaux.fr/.
  • O. Ramaré, Explicit estimates on the summatory functions of the Moebius function with coprimality restrictions, Submitted (2013), 12pp.
  • Olivier Ramaré, From explicit estimates for primes to explicit estimates for the Möbius function, Acta Arith. 157 (2013), no. 4, 365–379. MR 3019422, DOI 10.4064/aa157-4-4
  • Olivier Ramaré, Some elementary explicit bounds for two mollifications of the Moebius function, Functiones et Approximatio (2013), 12pp.
  • Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. MR 3018, DOI 10.2307/2371291
  • J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
  • Lowell Schoenfeld, An improved estimate for the summatory function of the Möbius function, Acta Arith. 15 (1968/69), 221–233. MR 241376, DOI 10.4064/aa-15-3-221-233
  • Wolfgang Schwarz and Jürgen Spilker, Arithmetical functions, London Mathematical Society Lecture Note Series, vol. 184, Cambridge University Press, Cambridge, 1994. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties. MR 1274248, DOI 10.1017/CBO9781107359963.014
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2010): 11N37, 11Y35, 11A25
  • Retrieve articles in all journals with MSC (2010): 11N37, 11Y35, 11A25
Additional Information
  • Olivier Ramaré
  • Affiliation: Laboratoire CNRS Paul Painlevé, Université Lille 1, 59 655 Villeneuve d’Ascq, France
  • MR Author ID: 360330
  • Email: ramare@math.univ-lille1.fr
  • Received by editor(s): March 27, 2013
  • Received by editor(s) in revised form: November 9, 2013
  • Published electronically: December 1, 2014
  • © Copyright 2014 American Mathematical Society
  • Journal: Math. Comp. 84 (2015), 1359-1387
  • MSC (2010): Primary 11N37, 11Y35; Secondary 11A25
  • DOI: https://doi.org/10.1090/S0025-5718-2014-02914-1
  • MathSciNet review: 3315512